4jmg: Difference between revisions
m Protected "4jmg" [edit=sysop:move=sysop] |
No edit summary |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The entry | ==Crystal structure of the synthetic protein in complex with pY peptide== | ||
<StructureSection load='4jmg' size='340' side='right'caption='[[4jmg]], [[Resolution|resolution]] 1.40Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4jmg]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4JMG OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4JMG FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.403Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PTR:O-PHOSPHOTYROSINE'>PTR</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4jmg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4jmg OCA], [https://pdbe.org/4jmg PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4jmg RCSB], [https://www.ebi.ac.uk/pdbsum/4jmg PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4jmg ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/PTN11_HUMAN PTN11_HUMAN] Defects in PTPN11 are the cause of LEOPARD syndrome type 1 (LEOPARD1) [MIM:[https://omim.org/entry/151100 151100]. It is an autosomal dominant disorder allelic with Noonan syndrome. The acronym LEOPARD stands for lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormalities of genitalia, retardation of growth, and deafness.<ref>PMID:12058348</ref> <ref>PMID:14961557</ref> <ref>PMID:15389709</ref> <ref>PMID:15520399</ref> <ref>PMID:15121796</ref> <ref>PMID:15690106</ref> <ref>PMID:16679933</ref> Defects in PTPN11 are the cause of Noonan syndrome type 1 (NS1) [MIM:[https://omim.org/entry/163950 163950]. Noonan syndrome (NS) is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. Some patients with Noonan syndrome type 1 develop multiple giant cell lesions of the jaw or other bony or soft tissues, which are classified as pigmented villomoduolar synovitis (PVNS) when occurring in the jaw or joints. Note=Mutations in PTPN11 account for more than 50% of the cases. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS1 inheritance is autosomal dominant.<ref>PMID:11704759</ref> <ref>PMID:11992261</ref> <ref>PMID:12325025</ref> <ref>PMID:12161469</ref> <ref>PMID:12529711</ref> <ref>PMID:12634870</ref> <ref>PMID:12739139</ref> <ref>PMID:12960218</ref> <ref>PMID:12717436</ref> <ref>PMID:15384080</ref> <ref>PMID:15948193</ref> <ref>PMID:19020799</ref> Defects in PTPN11 are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:[https://omim.org/entry/607785 607785]. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor.<ref>PMID:12717436</ref> Defects in PTPN11 are a cause of metachondromatosis (MC) [MIM:[https://omim.org/entry/156250 156250]. It is a skeletal disorder with radiologic fetarures of both multiple exostoses and Ollier disease, characterized by the presence of multiple enchondromas and osteochondroma-like lesions.<ref>PMID:20577567</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/PTN11_HUMAN PTN11_HUMAN] Acts downstream of various receptor and cytoplasmic protein tyrosine kinases to participate in the signal transduction from the cell surface to the nucleus. Dephosphorylates ROCK2 at Tyr-722 resulting in stimulatation of its RhoA binding activity.<ref>PMID:10655584</ref> <ref>PMID:18829466</ref> <ref>PMID:18559669</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Cell signaling depends on dynamic protein-protein interaction (PPI) networks, often assembled through modular domains each interacting with multiple peptide motifs. This complexity raises a conceptual challenge, namely to define whether a particular cellular response requires assembly of the complete PPI network of interest or can be driven by a specific interaction. To address this issue, we designed variants of the Grb2 SH2 domain ("pY-clamps") whose specificity is highly biased toward a single phosphotyrosine (pY) motif among many potential pYXNX Grb2-binding sites. Surprisingly, directing Grb2 predominantly to a single pY site of the Ptpn11/Shp2 phosphatase, but not other sites tested, was sufficient for differentiation of the essential primitive endoderm lineage from embryonic stem cells. Our data suggest that discrete connections within complex PPI networks can underpin regulation of particular biological events. We propose that this directed wiring approach will be of general utility in functionally annotating specific PPIs. | |||
Directed network wiring identifies a key protein interaction in embryonic stem cell differentiation.,Yasui N, Findlay GM, Gish GD, Hsiung MS, Huang J, Tucholska M, Taylor L, Smith L, Boldridge WC, Koide A, Pawson T, Koide S Mol Cell. 2014 Jun 19;54(6):1034-41. doi: 10.1016/j.molcel.2014.05.002. Epub 2014, Jun 5. PMID:24910098<ref>PMID:24910098</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 4jmg" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Synthetic construct]] | |||
[[Category: Koide S]] | |||
[[Category: Smith L]] | |||
[[Category: Yasui N]] |
Latest revision as of 06:06, 21 November 2024
Crystal structure of the synthetic protein in complex with pY peptideCrystal structure of the synthetic protein in complex with pY peptide
Structural highlights
DiseasePTN11_HUMAN Defects in PTPN11 are the cause of LEOPARD syndrome type 1 (LEOPARD1) [MIM:151100. It is an autosomal dominant disorder allelic with Noonan syndrome. The acronym LEOPARD stands for lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormalities of genitalia, retardation of growth, and deafness.[1] [2] [3] [4] [5] [6] [7] Defects in PTPN11 are the cause of Noonan syndrome type 1 (NS1) [MIM:163950. Noonan syndrome (NS) is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. Some patients with Noonan syndrome type 1 develop multiple giant cell lesions of the jaw or other bony or soft tissues, which are classified as pigmented villomoduolar synovitis (PVNS) when occurring in the jaw or joints. Note=Mutations in PTPN11 account for more than 50% of the cases. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS1 inheritance is autosomal dominant.[8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] Defects in PTPN11 are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:607785. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor.[20] Defects in PTPN11 are a cause of metachondromatosis (MC) [MIM:156250. It is a skeletal disorder with radiologic fetarures of both multiple exostoses and Ollier disease, characterized by the presence of multiple enchondromas and osteochondroma-like lesions.[21] FunctionPTN11_HUMAN Acts downstream of various receptor and cytoplasmic protein tyrosine kinases to participate in the signal transduction from the cell surface to the nucleus. Dephosphorylates ROCK2 at Tyr-722 resulting in stimulatation of its RhoA binding activity.[22] [23] [24] Publication Abstract from PubMedCell signaling depends on dynamic protein-protein interaction (PPI) networks, often assembled through modular domains each interacting with multiple peptide motifs. This complexity raises a conceptual challenge, namely to define whether a particular cellular response requires assembly of the complete PPI network of interest or can be driven by a specific interaction. To address this issue, we designed variants of the Grb2 SH2 domain ("pY-clamps") whose specificity is highly biased toward a single phosphotyrosine (pY) motif among many potential pYXNX Grb2-binding sites. Surprisingly, directing Grb2 predominantly to a single pY site of the Ptpn11/Shp2 phosphatase, but not other sites tested, was sufficient for differentiation of the essential primitive endoderm lineage from embryonic stem cells. Our data suggest that discrete connections within complex PPI networks can underpin regulation of particular biological events. We propose that this directed wiring approach will be of general utility in functionally annotating specific PPIs. Directed network wiring identifies a key protein interaction in embryonic stem cell differentiation.,Yasui N, Findlay GM, Gish GD, Hsiung MS, Huang J, Tucholska M, Taylor L, Smith L, Boldridge WC, Koide A, Pawson T, Koide S Mol Cell. 2014 Jun 19;54(6):1034-41. doi: 10.1016/j.molcel.2014.05.002. Epub 2014, Jun 5. PMID:24910098[25] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|