2kzu: Difference between revisions
No edit summary |
No edit summary |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==DAXX helical bundle (DHB) domain / Rassf1C complex== | |||
<StructureSection load='2kzu' size='340' side='right'caption='[[2kzu]]' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2kzu]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KZU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2KZU FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2kzu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2kzu OCA], [https://pdbe.org/2kzu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2kzu RCSB], [https://www.ebi.ac.uk/pdbsum/2kzu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2kzu ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/DAXX_HUMAN DAXX_HUMAN] Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Down-regulates basal and activated transcription. Seems to act as a transcriptional corepressor and inhibits PAX3 and ETS1 through direct protein-protein interaction. Modulates PAX5 activity. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively.<ref>PMID:12140263</ref> <ref>PMID:15364927</ref> <ref>PMID:17081986</ref> <ref>PMID:16845383</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
DAXX is a scaffold protein with diverse roles including transcription and cell cycle regulation. Using NMR spectroscopy, we demonstrate that the C-terminal half of DAXX is intrinsically disordered, whereas a folded domain is present near its N terminus. This domain forms a left-handed four-helix bundle (H1, H2, H4, H5). However, due to a crossover helix (H3), this topology differs from that of the Sin3 PAH domain, which to date has been used as a model for DAXX. The N-terminal residues of the tumor suppressor Rassf1C fold into an amphipathic alpha helix upon binding this DAXX domain via a shallow cleft along the flexible helices H2 and H5 (K(D) approximately 60 muM). Based on a proposed DAXX recognition motif as hydrophobic residues preceded by negatively charged groups, we found that peptide models of p53 and Mdm2 also bound the helical bundle. These data provide a structural foundation for understanding the diverse functions of DAXX. | |||
Structural Characterization of the DAXX N-Terminal Helical Bundle Domain and Its Complex with Rassf1C.,Escobar-Cabrera E, Lau DK, Giovinazzi S, Ishov AM, McIntosh LP Structure. 2010 Dec 8;18(12):1642-53. PMID:21134643<ref>PMID:21134643</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2kzu" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Death-associated protein|Death-associated protein]] | *[[Death-associated protein 3D structures|Death-associated protein 3D structures]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Escobar-Cabrera | [[Category: Large Structures]] | ||
[[Category: Giovinazzi | [[Category: Escobar-Cabrera E]] | ||
[[Category: Ishov | [[Category: Giovinazzi S]] | ||
[[Category: Lau | [[Category: Ishov AM]] | ||
[[Category: McIntosh | [[Category: Lau DKW]] | ||
[[Category: McIntosh LP]] | |||
Latest revision as of 08:38, 15 May 2024
DAXX helical bundle (DHB) domain / Rassf1C complexDAXX helical bundle (DHB) domain / Rassf1C complex
Structural highlights
FunctionDAXX_HUMAN Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Down-regulates basal and activated transcription. Seems to act as a transcriptional corepressor and inhibits PAX3 and ETS1 through direct protein-protein interaction. Modulates PAX5 activity. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively.[1] [2] [3] [4] Publication Abstract from PubMedDAXX is a scaffold protein with diverse roles including transcription and cell cycle regulation. Using NMR spectroscopy, we demonstrate that the C-terminal half of DAXX is intrinsically disordered, whereas a folded domain is present near its N terminus. This domain forms a left-handed four-helix bundle (H1, H2, H4, H5). However, due to a crossover helix (H3), this topology differs from that of the Sin3 PAH domain, which to date has been used as a model for DAXX. The N-terminal residues of the tumor suppressor Rassf1C fold into an amphipathic alpha helix upon binding this DAXX domain via a shallow cleft along the flexible helices H2 and H5 (K(D) approximately 60 muM). Based on a proposed DAXX recognition motif as hydrophobic residues preceded by negatively charged groups, we found that peptide models of p53 and Mdm2 also bound the helical bundle. These data provide a structural foundation for understanding the diverse functions of DAXX. Structural Characterization of the DAXX N-Terminal Helical Bundle Domain and Its Complex with Rassf1C.,Escobar-Cabrera E, Lau DK, Giovinazzi S, Ishov AM, McIntosh LP Structure. 2010 Dec 8;18(12):1642-53. PMID:21134643[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|