1uvt: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1uvt.jpg|left|200px]]<br /><applet load="1uvt" size="350" color="white" frame="true" align="right" spinBox="true"
caption="1uvt, resolution 2.5&Aring;" />
'''BOVINE THROMBIN--BM14.1248 COMPLEX'''<br />


==Overview==
==BOVINE THROMBIN--BM14.1248 COMPLEX==
<StructureSection load='1uvt' size='340' side='right'caption='[[1uvt]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1uvt]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UVT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1UVT FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=I48:N-{3-METHYL-5-[2-(PYRIDIN-4-YLAMINO)-ETHOXY]-PHENYL}-BENZENESULFONAMIDE'>I48</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1uvt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1uvt OCA], [https://pdbe.org/1uvt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1uvt RCSB], [https://www.ebi.ac.uk/pdbsum/1uvt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1uvt ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/THRB_BOVIN THRB_BOVIN] Thrombin, which cleaves bonds after Arg and Lys, converts fibrinogen to fibrin and activates factors V, VII, VIII, XIII, and, in complex with thrombomodulin, protein C. Functions in blood homeostasis, inflammation and wound healing (By similarity).
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/uv/1uvt_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1uvt ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
BACKGROUND: The explosive growth in the rate of X-ray determination of protein structures is fuelled largely by the expectation that structural information will be useful for pharmacological and biotechnological applications. For example, there have been intensive efforts to develop orally administrable antithrombotic drugs using information about the crystal structures of blood coagulation factors, including thrombin. Most of the low molecular weight thrombin inhibitors studied so far are based on arginine and benzamidine. We sought to expand the database of information on thrombin-inhibitor binding by studying new classes of inhibitors. RESULTS: We report the structures of three new inhibitors complexed with thrombin, two based on 4-aminopyridine and one based on naphthamidine. We observe several geometry changes in the protein main chain and side chains which accompany inhibitor binding. The two inhibitors based on 4-aminopyridine bind in notably different ways: one forms a water-mediated hydrogen bond to the active site Ser195, the other induces a rotation of the Ser214-Trp215 peptide plane that is unprecedented in thrombin structures. These binding modes also differ in their 'weak' interactions, including CH-O hydrogen bonds and interactions between water molecules and aromatic pi-clouds. Induced-fit structural changes were also seen in the structure of the naphthamidine inhibitor complex. CONCLUSIONS: Protein flexibility and variable water structures are essential elements in protein-ligand interactions. Ligand design strategies that fail to take this into account may overlook or underestimate the potential of lead structures. Further, the significance of 'weak' interactions must be considered both in crystallographic refinement and in analysis of binding mechanisms.
BACKGROUND: The explosive growth in the rate of X-ray determination of protein structures is fuelled largely by the expectation that structural information will be useful for pharmacological and biotechnological applications. For example, there have been intensive efforts to develop orally administrable antithrombotic drugs using information about the crystal structures of blood coagulation factors, including thrombin. Most of the low molecular weight thrombin inhibitors studied so far are based on arginine and benzamidine. We sought to expand the database of information on thrombin-inhibitor binding by studying new classes of inhibitors. RESULTS: We report the structures of three new inhibitors complexed with thrombin, two based on 4-aminopyridine and one based on naphthamidine. We observe several geometry changes in the protein main chain and side chains which accompany inhibitor binding. The two inhibitors based on 4-aminopyridine bind in notably different ways: one forms a water-mediated hydrogen bond to the active site Ser195, the other induces a rotation of the Ser214-Trp215 peptide plane that is unprecedented in thrombin structures. These binding modes also differ in their 'weak' interactions, including CH-O hydrogen bonds and interactions between water molecules and aromatic pi-clouds. Induced-fit structural changes were also seen in the structure of the naphthamidine inhibitor complex. CONCLUSIONS: Protein flexibility and variable water structures are essential elements in protein-ligand interactions. Ligand design strategies that fail to take this into account may overlook or underestimate the potential of lead structures. Further, the significance of 'weak' interactions must be considered both in crystallographic refinement and in analysis of binding mechanisms.


==About this Structure==
Enzyme flexibility, solvent and 'weak' interactions characterize thrombin-ligand interactions: implications for drug design.,Engh RA, Brandstetter H, Sucher G, Eichinger A, Baumann U, Bode W, Huber R, Poll T, Rudolph R, von der Saal W Structure. 1996 Nov 15;4(11):1353-62. PMID:8939759<ref>PMID:8939759</ref>
1UVT is a [http://en.wikipedia.org/wiki/Protein_complex Protein complex] structure of sequences from [http://en.wikipedia.org/wiki/Bos_taurus Bos taurus] with <scene name='pdbligand=I48:'>I48</scene> as [http://en.wikipedia.org/wiki/ligand ligand]. Active as [http://en.wikipedia.org/wiki/Thrombin Thrombin], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.21.5 3.4.21.5] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UVT OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Enzyme flexibility, solvent and 'weak' interactions characterize thrombin-ligand interactions: implications for drug design., Engh RA, Brandstetter H, Sucher G, Eichinger A, Baumann U, Bode W, Huber R, Poll T, Rudolph R, von der Saal W, Structure. 1996 Nov 15;4(11):1353-62. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=8939759 8939759]
</div>
<div class="pdbe-citations 1uvt" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[Thrombin 3D Structures|Thrombin 3D Structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Bos taurus]]
[[Category: Bos taurus]]
[[Category: Protein complex]]
[[Category: Large Structures]]
[[Category: Thrombin]]
[[Category: Engh RA]]
[[Category: Engh, R A.]]
[[Category: Huber R]]
[[Category: Huber, R.]]
[[Category: I48]]
[[Category: blood coagulation]]
[[Category: hydrolase]]
[[Category: serine protease]]
[[Category: thrombin]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 15:28:56 2008''

Latest revision as of 10:32, 30 October 2024

BOVINE THROMBIN--BM14.1248 COMPLEXBOVINE THROMBIN--BM14.1248 COMPLEX

Structural highlights

1uvt is a 2 chain structure with sequence from Bos taurus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

THRB_BOVIN Thrombin, which cleaves bonds after Arg and Lys, converts fibrinogen to fibrin and activates factors V, VII, VIII, XIII, and, in complex with thrombomodulin, protein C. Functions in blood homeostasis, inflammation and wound healing (By similarity).

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: The explosive growth in the rate of X-ray determination of protein structures is fuelled largely by the expectation that structural information will be useful for pharmacological and biotechnological applications. For example, there have been intensive efforts to develop orally administrable antithrombotic drugs using information about the crystal structures of blood coagulation factors, including thrombin. Most of the low molecular weight thrombin inhibitors studied so far are based on arginine and benzamidine. We sought to expand the database of information on thrombin-inhibitor binding by studying new classes of inhibitors. RESULTS: We report the structures of three new inhibitors complexed with thrombin, two based on 4-aminopyridine and one based on naphthamidine. We observe several geometry changes in the protein main chain and side chains which accompany inhibitor binding. The two inhibitors based on 4-aminopyridine bind in notably different ways: one forms a water-mediated hydrogen bond to the active site Ser195, the other induces a rotation of the Ser214-Trp215 peptide plane that is unprecedented in thrombin structures. These binding modes also differ in their 'weak' interactions, including CH-O hydrogen bonds and interactions between water molecules and aromatic pi-clouds. Induced-fit structural changes were also seen in the structure of the naphthamidine inhibitor complex. CONCLUSIONS: Protein flexibility and variable water structures are essential elements in protein-ligand interactions. Ligand design strategies that fail to take this into account may overlook or underestimate the potential of lead structures. Further, the significance of 'weak' interactions must be considered both in crystallographic refinement and in analysis of binding mechanisms.

Enzyme flexibility, solvent and 'weak' interactions characterize thrombin-ligand interactions: implications for drug design.,Engh RA, Brandstetter H, Sucher G, Eichinger A, Baumann U, Bode W, Huber R, Poll T, Rudolph R, von der Saal W Structure. 1996 Nov 15;4(11):1353-62. PMID:8939759[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Engh RA, Brandstetter H, Sucher G, Eichinger A, Baumann U, Bode W, Huber R, Poll T, Rudolph R, von der Saal W. Enzyme flexibility, solvent and 'weak' interactions characterize thrombin-ligand interactions: implications for drug design. Structure. 1996 Nov 15;4(11):1353-62. PMID:8939759

1uvt, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA