1gmh: Difference between revisions
m Protected "1gmh" [edit=sysop:move=sysop] |
No edit summary |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==REFINED CRYSTAL STRUCTURE OF "AGED" AND "NON-AGED" ORGANOPHOSPHORYL CONJUGATES OF GAMMA-CHYMOTRYPSIN== | |||
<StructureSection load='1gmh' size='340' side='right'caption='[[1gmh]], [[Resolution|resolution]] 2.10Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1gmh]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GMH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1GMH FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ISP:PHOSPHORYLISOPROPANE'>ISP</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1gmh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1gmh OCA], [https://pdbe.org/1gmh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1gmh RCSB], [https://www.ebi.ac.uk/pdbsum/1gmh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1gmh ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/CTRA_BOVIN CTRA_BOVIN] | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/gm/1gmh_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1gmh ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
"Aged" organophosphoryl conjugates of serine hydrolases differ from the corresponding "non-aged" conjugates in their striking resistance to nucleophilic reactivation. The refined X-ray structures of "aged" and "non-aged" organophosphoryl conjugates of gamma-chymotrypsin were compared in order to understand the molecular basis for this resistance of "aged" conjugates. "Aged" and "non-aged" crystalline organophosphoryl-gamma-chymotrypsin conjugates were obtained by prolonged soaking of native gamma-chymotrypsin crystals with appropriate organophosphates. Thus, a representative "non-aged" conjugate, diethylphosphoryl-gamma-chymotrypsin, was obtained by soaking native crystals with paraoxon (diethyl-p-nitrophenyl phosphate), and a closely related "aged" conjugate, monoisopropyl-gamma-chymotrypsin, was obtained by soaking with diisopropylphosphorofluoridate. In both crystalline conjugates, the refined structures clearly reveal a high occupancy of the active site by the appropriate organophosphoryl moiety within covalent bonding distance of Ser195 O gamma. Whereas in the "non-aged" conjugate both ethyl groups can be visualized clearly, in the putative "aged" conjugate, as expected, only one isopropyl group is present. There is virtually no difference between the "aged" and "non-aged" conjugates either with respect to the conformation of the polypeptide backbone as a whole or with respect to the positioning of the side-chains within the active site. In the "aged" conjugate, however, close proximity (2.6 A) of the negatively charged phosphate oxygen atom of the dealkylated organophosphoryl group to His57 N epsilon 2 indicates the presence of a salt bridge between these two moieties. In contrast, in the "non-aged" conjugate the DEP moiety retains its two alkyl groups; thus, lacking a negative oxygen atom, it does not enter into such a charge-charge interaction and its nearest oxygen atom is 3.6 A away from His57 N epsilon 2. It is suggested that steric constraints imposed by the salt bridge in the "aged" conjugate lie at the basis of its resistance to reactivation. | |||
Refined crystal structures of "aged" and "non-aged" organophosphoryl conjugates of gamma-chymotrypsin.,Harel M, Su CT, Frolow F, Ashani Y, Silman I, Sussman JL J Mol Biol. 1991 Oct 5;221(3):909-18. PMID:1942036<ref>PMID:1942036</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1gmh" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
[[ | *[[Chymotrypsin 3D structures|Chymotrypsin 3D structures]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Bos taurus]] | [[Category: Bos taurus]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Harel | [[Category: Harel M]] | ||
[[Category: Silman | [[Category: Silman I]] | ||
[[Category: Sussman | [[Category: Sussman JL]] |
Latest revision as of 11:28, 6 November 2024
REFINED CRYSTAL STRUCTURE OF "AGED" AND "NON-AGED" ORGANOPHOSPHORYL CONJUGATES OF GAMMA-CHYMOTRYPSINREFINED CRYSTAL STRUCTURE OF "AGED" AND "NON-AGED" ORGANOPHOSPHORYL CONJUGATES OF GAMMA-CHYMOTRYPSIN
Structural highlights
FunctionEvolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMed"Aged" organophosphoryl conjugates of serine hydrolases differ from the corresponding "non-aged" conjugates in their striking resistance to nucleophilic reactivation. The refined X-ray structures of "aged" and "non-aged" organophosphoryl conjugates of gamma-chymotrypsin were compared in order to understand the molecular basis for this resistance of "aged" conjugates. "Aged" and "non-aged" crystalline organophosphoryl-gamma-chymotrypsin conjugates were obtained by prolonged soaking of native gamma-chymotrypsin crystals with appropriate organophosphates. Thus, a representative "non-aged" conjugate, diethylphosphoryl-gamma-chymotrypsin, was obtained by soaking native crystals with paraoxon (diethyl-p-nitrophenyl phosphate), and a closely related "aged" conjugate, monoisopropyl-gamma-chymotrypsin, was obtained by soaking with diisopropylphosphorofluoridate. In both crystalline conjugates, the refined structures clearly reveal a high occupancy of the active site by the appropriate organophosphoryl moiety within covalent bonding distance of Ser195 O gamma. Whereas in the "non-aged" conjugate both ethyl groups can be visualized clearly, in the putative "aged" conjugate, as expected, only one isopropyl group is present. There is virtually no difference between the "aged" and "non-aged" conjugates either with respect to the conformation of the polypeptide backbone as a whole or with respect to the positioning of the side-chains within the active site. In the "aged" conjugate, however, close proximity (2.6 A) of the negatively charged phosphate oxygen atom of the dealkylated organophosphoryl group to His57 N epsilon 2 indicates the presence of a salt bridge between these two moieties. In contrast, in the "non-aged" conjugate the DEP moiety retains its two alkyl groups; thus, lacking a negative oxygen atom, it does not enter into such a charge-charge interaction and its nearest oxygen atom is 3.6 A away from His57 N epsilon 2. It is suggested that steric constraints imposed by the salt bridge in the "aged" conjugate lie at the basis of its resistance to reactivation. Refined crystal structures of "aged" and "non-aged" organophosphoryl conjugates of gamma-chymotrypsin.,Harel M, Su CT, Frolow F, Ashani Y, Silman I, Sussman JL J Mol Biol. 1991 Oct 5;221(3):909-18. PMID:1942036[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|