1egw: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "1egw" [edit=sysop:move=sysop]
No edit summary
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1egw.png|left|200px]]


{{STRUCTURE_1egw| PDB=1egw | SCENE= }}
==CRYSTAL STRUCTURE OF MEF2A CORE BOUND TO DNA==
<StructureSection load='1egw' size='340' side='right'caption='[[1egw]], [[Resolution|resolution]] 1.50&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1egw]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EGW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1EGW FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.5&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1egw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1egw OCA], [https://pdbe.org/1egw PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1egw RCSB], [https://www.ebi.ac.uk/pdbsum/1egw PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1egw ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/MEF2A_HUMAN MEF2A_HUMAN] Defects in MEF2A are a cause of coronary artery disease, autosomal dominant, type 1 (ADCAD1) [MIM:[https://omim.org/entry/608320 608320]. A common heart disease characterized by reduced or absent blood flow in one or more of the arteries that encircle and supply the heart. Its most important complication is acute myocardial infarction.
== Function ==
[https://www.uniprot.org/uniprot/MEF2A_HUMAN MEF2A_HUMAN] Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific genes. Also involved in the activation of numerous growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. In cerebellar granule neurons, phosphorylated and sumoylated MEF2A represses transcription of NUR77 promoting synaptic differentiation.<ref>PMID:9858528</ref> <ref>PMID:11904443</ref> <ref>PMID:12691662</ref> <ref>PMID:15834131</ref> <ref>PMID:16563226</ref> <ref>PMID:16371476</ref> <ref>PMID:16484498</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/eg/1egw_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1egw ConSurf].
<div style="clear:both"></div>


===CRYSTAL STRUCTURE OF MEF2A CORE BOUND TO DNA===
==See Also==
 
*[[Myocyte enhancer factor 2|Myocyte enhancer factor 2]]
 
== References ==
==About this Structure==
<references/>
[[1egw]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EGW OCA].
__TOC__
 
</StructureSection>
==Reference==
<ref group="xtra">PMID:010715212</ref><ref group="xtra">PMID:015048824</ref><references group="xtra"/>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Richmond, T J.]]
[[Category: Large Structures]]
[[Category: Santelli, E.]]
[[Category: Richmond TJ]]
[[Category: Dna-protein complex]]
[[Category: Santelli E]]
[[Category: Mads-box transcription factor]]
[[Category: Transcription-dna complex]]
[[Category: Transcription/dna]]

Latest revision as of 10:02, 7 February 2024

CRYSTAL STRUCTURE OF MEF2A CORE BOUND TO DNACRYSTAL STRUCTURE OF MEF2A CORE BOUND TO DNA

Structural highlights

1egw is a 8 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.5Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

MEF2A_HUMAN Defects in MEF2A are a cause of coronary artery disease, autosomal dominant, type 1 (ADCAD1) [MIM:608320. A common heart disease characterized by reduced or absent blood flow in one or more of the arteries that encircle and supply the heart. Its most important complication is acute myocardial infarction.

Function

MEF2A_HUMAN Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific genes. Also involved in the activation of numerous growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. In cerebellar granule neurons, phosphorylated and sumoylated MEF2A represses transcription of NUR77 promoting synaptic differentiation.[1] [2] [3] [4] [5] [6] [7]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F, Olson EN, Ulevitch RJ, Han J. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol. 1999 Jan;19(1):21-30. PMID:9858528
  2. Okamoto S, Li Z, Ju C, Scholzke MN, Mathews E, Cui J, Salvesen GS, Bossy-Wetzel E, Lipton SA. Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3974-9. PMID:11904443 doi:10.1073/pnas.022036399
  3. Gong X, Tang X, Wiedmann M, Wang X, Peng J, Zheng D, Blair LA, Marshall J, Mao Z. Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron. 2003 Apr 10;38(1):33-46. PMID:12691662
  4. Zhu B, Ramachandran B, Gulick T. Alternative pre-mRNA splicing governs expression of a conserved acidic transactivation domain in myocyte enhancer factor 2 factors of striated muscle and brain. J Biol Chem. 2005 Aug 5;280(31):28749-60. Epub 2005 Apr 15. PMID:15834131 doi:10.1074/jbc.M502491200
  5. Riquelme C, Barthel KK, Liu X. SUMO-1 modification of MEF2A regulates its transcriptional activity. J Cell Mol Med. 2006 Jan-Mar;10(1):132-44. PMID:16563226
  6. Hietakangas V, Anckar J, Blomster HA, Fujimoto M, Palvimo JJ, Nakai A, Sistonen L. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci U S A. 2006 Jan 3;103(1):45-50. Epub 2005 Dec 21. PMID:16371476 doi:10.1073/pnas.0503698102
  7. Shalizi A, Gaudilliere B, Yuan Z, Stegmuller J, Shirogane T, Ge Q, Tan Y, Schulman B, Harper JW, Bonni A. A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science. 2006 Feb 17;311(5763):1012-7. PMID:16484498 doi:10.1126/science.1122513

1egw, resolution 1.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA