1a0o: Difference between revisions
m Protected "1a0o" [edit=sysop:move=sysop] |
No edit summary |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==CHEY-BINDING DOMAIN OF CHEA IN COMPLEX WITH CHEY== | |||
<StructureSection load='1a0o' size='340' side='right'caption='[[1a0o]], [[Resolution|resolution]] 2.95Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1a0o]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A0O OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1A0O FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.95Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1a0o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1a0o OCA], [https://pdbe.org/1a0o PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1a0o RCSB], [https://www.ebi.ac.uk/pdbsum/1a0o PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1a0o ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/CHEY_ECOLI CHEY_ECOLI] Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. In its active (phosphorylated or acetylated) form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation. Overexpression of CheY in association with MotA and MotB improves motility of a ycgR disruption, suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein and the flagellar stator.<ref>PMID:20346719</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a0/1a0o_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1a0o ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Bacterial adaptation to the environment is accomplished through the coordinated activation of specific sensory receptors and signal processing proteins. Among the best characterized of these pathways are those which employ the two-component paradigm. In these systems, signal transmission is mediated by Mg(2+)-dependent phospho-relay reactions between histidine auto-kinases and phospho-accepting receiver domains in response-regulator proteins. Although this mechanism of activation is common to all response-regulators, detrimental cross-talk between different two-component pathways within the same cell is minimized through the use of specific recognition domains. Here, we report the crystal structure, at 2.95 A resolution, of the response regulator of bacterial chemotaxis, CheY, bound to the recognition domain from its cognate histidine kinase, CheA. The structure suggests that molecular recognition, in this low affinity complex (KD = 2 microM), may also contribute to the mechanism of CheY activation. | |||
Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY.,Welch M, Chinardet N, Mourey L, Birck C, Samama JP Nat Struct Biol. 1998 Jan;5(1):25-9. PMID:9437425<ref>PMID:9437425</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1a0o" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
== | __TOC__ | ||
< | </StructureSection> | ||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: Birck | [[Category: Large Structures]] | ||
[[Category: Chinardet | [[Category: Birck C]] | ||
[[Category: Mourey | [[Category: Chinardet N]] | ||
[[Category: Samama | [[Category: Mourey L]] | ||
[[Category: Welch | [[Category: Samama JP]] | ||
[[Category: Welch M]] | |||
Latest revision as of 13:43, 2 August 2023
CHEY-BINDING DOMAIN OF CHEA IN COMPLEX WITH CHEYCHEY-BINDING DOMAIN OF CHEA IN COMPLEX WITH CHEY
Structural highlights
FunctionCHEY_ECOLI Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. In its active (phosphorylated or acetylated) form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation. Overexpression of CheY in association with MotA and MotB improves motility of a ycgR disruption, suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein and the flagellar stator.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBacterial adaptation to the environment is accomplished through the coordinated activation of specific sensory receptors and signal processing proteins. Among the best characterized of these pathways are those which employ the two-component paradigm. In these systems, signal transmission is mediated by Mg(2+)-dependent phospho-relay reactions between histidine auto-kinases and phospho-accepting receiver domains in response-regulator proteins. Although this mechanism of activation is common to all response-regulators, detrimental cross-talk between different two-component pathways within the same cell is minimized through the use of specific recognition domains. Here, we report the crystal structure, at 2.95 A resolution, of the response regulator of bacterial chemotaxis, CheY, bound to the recognition domain from its cognate histidine kinase, CheA. The structure suggests that molecular recognition, in this low affinity complex (KD = 2 microM), may also contribute to the mechanism of CheY activation. Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY.,Welch M, Chinardet N, Mourey L, Birck C, Samama JP Nat Struct Biol. 1998 Jan;5(1):25-9. PMID:9437425[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|