1ium: Difference between revisions
No edit summary |
No edit summary |
||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{Theoretical_model}} | {{Theoretical_model}} | ||
[[ | ==LOV DOMAIN OF THE YTVA PROTEIN FROM BACILLUS SUBTILIS: A THEORETICAL MODEL== | ||
<StructureSection load='1ium' size='340' side='right'caption='[[1ium]]' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1IUM FirstGlance]. <br> | |||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ium FirstGlance], [https://www.ebi.ac.uk/pdbsum/1ium PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ium ProSAT]</span></td></tr> | |||
</table> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
A prokaryotic protein, YtvA from Bacillus subtilis, was found to possess a light, oxygen, voltage (LOV) domain sharing high homology with the photoactive, flavin mononucleotide (FMN)-binding LOV domains of phototropins (phot), blue-light photoreceptors for phototropism in higher plants. Computer-based three-dimensional modeling suggests that YtvA-LOV binds FMN in a similar pocket as phot-LOVs. Recombinant YtvA indeed exhibits the same spectroscopical features and blue-light-induced photochemistry as phot-LOVs, with the reversible formation of a blue-shifted photoproduct, assigned to an FMN-cysteine thiol adduct (Thio383). By means of laser-flash photolysis and time-resolved optoacoustic experiments, we measured the quantum yield of formation for Thio383, Phi(Thio) = 0.49, and the enthalpy change, DeltaH(Thio) = 135 kJ/mol, with respect to the parent state. The formation of Thio383 is accompanied by a considerable volume contraction, DeltaV(Thio) = -13.5 ml/mol. Similar to phot-LOVs, Thio383 is formed from the decay of a red-shifted transient species, T650, within 2 micros. In both YtvA and free FMN, this transient has an enthalpy content of approximately 200 kJ/mol, and its formation is accompanied by a small contraction, DeltaV(T) approximately -1.5 ml/mol, supporting the assignment of T650 to the FMN triplet state, as suggested by spectroscopical evidences. These are the first studies indicating that phototropin-related, blue-light receptors may exist also in prokaryotes, besides constituting a steadily growing family in plants. | |||
First evidence for phototropin-related blue-light receptors in prokaryotes.,Losi A, Polverini E, Quest B, Gartner W Biophys J. 2002 May;82(5):2627-34. PMID:11964249<ref>PMID:11964249</ref> | |||
== | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | |||
<div class="pdbe-citations 1ium" style="background-color:#fffaf0;"></div> | |||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Theoretical Model]] | |||
[[Category: Large Structures]] | |||
[[Category: Losi, A]] | [[Category: Losi, A]] | ||
[[Category: Polverini, E]] | [[Category: Polverini, E]] |