3phd: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:3phd.png|left|200px]]


{{STRUCTURE_3phd| PDB=3phd | SCENE= }}
==Crystal structure of human HDAC6 in complex with ubiquitin==
<StructureSection load='3phd' size='340' side='right'caption='[[3phd]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3phd]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3PHD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3PHD FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3phd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3phd OCA], [https://pdbe.org/3phd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3phd RCSB], [https://www.ebi.ac.uk/pdbsum/3phd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3phd ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/HDAC6_HUMAN HDAC6_HUMAN] Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Plays a central role in microtubule-dependent cell motility via deacetylation of tubulin.<ref>PMID:12024216</ref> <ref>PMID:17846173</ref>  In addition to its protein deacetylase activity, plays a key role in the degradation of misfolded proteins: when misfolded proteins are too abundant to be degraded by the chaperone refolding system and the ubiquitin-proteasome, mediates the transport of misfolded proteins to a cytoplasmic juxtanuclear structure called aggresome. Probably acts as an adapter that recognizes polyubiquitinated misfolded proteins and target them to the aggresome, facilitating their clearance by autophagy.<ref>PMID:12024216</ref> <ref>PMID:17846173</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The aggresome pathway is activated when proteasomal clearance of misfolded proteins is hindered. Misfolded polyubiquitinated protein aggregates are recruited and transported to the aggresome via the microtubule network by a protein complex consisting of histone deacetylase 6 (HDAC6) and the dynein motor complex. Current model suggests that HDAC6 recognizes protein aggregates by binding directly to polyubiquitinated proteins. Here, we show that there are substantial amounts of unanchored ubiquitin in protein aggregates with solvent accessible C-termini. The ubiquitin binding domain (ZnF-UBP) of HDAC6 binds exclusively to the unanchored C-terminal diglycine motif of ubiquitin instead of conjugated polyubiquitin. The unanchored ubiquitin C-termini in the aggregates are generated in situ by aggregate-associated deubiquitinase ataxin-3. These results provide structural and mechanistic bases for the role of HDAC6 in aggresome formation and further suggest a novel ubiquitin-mediated signaling pathway, where the exposure of ubiquitin C-termini within protein aggregates enables HDAC6 recognition and transport to the aggresome.


===Crystal structure of human HDAC6 in complex with ubiquitin===
Protein aggregates are recruited to the aggresome by histone deacetylase 6 via unanchored ubiquitin C-termini.,Ouyang H, Ali YO, Ravichandran M, Dong A, Qiu W, Mackenzie F, Dhe-Paganon S, Arrowsmith CH, Zhai RG J Biol Chem. 2011 Nov 8. PMID:22069321<ref>PMID:22069321</ref>


{{ABSTRACT_PUBMED_22069321}}
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
==About this Structure==
<div class="pdbe-citations 3phd" style="background-color:#fffaf0;"></div>
[[3phd]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3PHD OCA].


==See Also==
==See Also==
*[[Histone deacetylase|Histone deacetylase]]
*[[Histone deacetylase 3D structures|Histone deacetylase 3D structures]]
*[[Ubiquitin|Ubiquitin]]
*[[3D structures of ubiquitin|3D structures of ubiquitin]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:022069321</ref><references group="xtra"/>
__TOC__
[[Category: Histone deacetylase]]
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Dong, A.]]
[[Category: Large Structures]]
[[Category: Kozieradzki, I.]]
[[Category: Dong A]]
[[Category: Li, F.]]
[[Category: Kozieradzki I]]
[[Category: Loppnau, P.]]
[[Category: Li F]]
[[Category: Mackenzie, F.]]
[[Category: Loppnau P]]
[[Category: Ouyang, H.]]
[[Category: Mackenzie F]]
[[Category: Qui, W.]]
[[Category: Ouyang H]]
[[Category: Ravichandran, M.]]
[[Category: Qui W]]
[[Category: SGC, Structural Genomics Consortium.]]
[[Category: Ravichandran M]]
[[Category: Schuetz, A.]]
[[Category: Schuetz A]]
[[Category: Hdac6]]
[[Category: Protein binding]]
[[Category: Sgc]]
[[Category: Structural genomic]]
[[Category: Structural genomics consortium]]
[[Category: Ubiquitin]]

Latest revision as of 12:54, 6 September 2023

Crystal structure of human HDAC6 in complex with ubiquitinCrystal structure of human HDAC6 in complex with ubiquitin

Structural highlights

3phd is a 8 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

HDAC6_HUMAN Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Plays a central role in microtubule-dependent cell motility via deacetylation of tubulin.[1] [2] In addition to its protein deacetylase activity, plays a key role in the degradation of misfolded proteins: when misfolded proteins are too abundant to be degraded by the chaperone refolding system and the ubiquitin-proteasome, mediates the transport of misfolded proteins to a cytoplasmic juxtanuclear structure called aggresome. Probably acts as an adapter that recognizes polyubiquitinated misfolded proteins and target them to the aggresome, facilitating their clearance by autophagy.[3] [4]

Publication Abstract from PubMed

The aggresome pathway is activated when proteasomal clearance of misfolded proteins is hindered. Misfolded polyubiquitinated protein aggregates are recruited and transported to the aggresome via the microtubule network by a protein complex consisting of histone deacetylase 6 (HDAC6) and the dynein motor complex. Current model suggests that HDAC6 recognizes protein aggregates by binding directly to polyubiquitinated proteins. Here, we show that there are substantial amounts of unanchored ubiquitin in protein aggregates with solvent accessible C-termini. The ubiquitin binding domain (ZnF-UBP) of HDAC6 binds exclusively to the unanchored C-terminal diglycine motif of ubiquitin instead of conjugated polyubiquitin. The unanchored ubiquitin C-termini in the aggregates are generated in situ by aggregate-associated deubiquitinase ataxin-3. These results provide structural and mechanistic bases for the role of HDAC6 in aggresome formation and further suggest a novel ubiquitin-mediated signaling pathway, where the exposure of ubiquitin C-termini within protein aggregates enables HDAC6 recognition and transport to the aggresome.

Protein aggregates are recruited to the aggresome by histone deacetylase 6 via unanchored ubiquitin C-termini.,Ouyang H, Ali YO, Ravichandran M, Dong A, Qiu W, Mackenzie F, Dhe-Paganon S, Arrowsmith CH, Zhai RG J Biol Chem. 2011 Nov 8. PMID:22069321[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP. HDAC6 is a microtubule-associated deacetylase. Nature. 2002 May 23;417(6887):455-8. PMID:12024216 doi:http://dx.doi.org/10.1038/417455a
  2. Olzmann JA, Li L, Chudaev MV, Chen J, Perez FA, Palmiter RD, Chin LS. Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol. 2007 Sep 10;178(6):1025-38. PMID:17846173 doi:10.1083/jcb.200611128
  3. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP. HDAC6 is a microtubule-associated deacetylase. Nature. 2002 May 23;417(6887):455-8. PMID:12024216 doi:http://dx.doi.org/10.1038/417455a
  4. Olzmann JA, Li L, Chudaev MV, Chen J, Perez FA, Palmiter RD, Chin LS. Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol. 2007 Sep 10;178(6):1025-38. PMID:17846173 doi:10.1083/jcb.200611128
  5. Ouyang H, Ali YO, Ravichandran M, Dong A, Qiu W, Mackenzie F, Dhe-Paganon S, Arrowsmith CH, Zhai RG. Protein aggregates are recruited to the aggresome by histone deacetylase 6 via unanchored ubiquitin C-termini. J Biol Chem. 2011 Nov 8. PMID:22069321 doi:10.1074/jbc.M111.273730

3phd, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA