3uvw: Difference between revisions
No edit summary |
No edit summary Tag: Manual revert |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal Structure of the first bromodomain of human BRD4 in complex with a diacetylated histone 4 peptide (H4K5acK8ac)== | |||
<StructureSection load='3uvw' size='340' side='right'caption='[[3uvw]], [[Resolution|resolution]] 1.37Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3uvw]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3UVW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3UVW FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.37Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ALY:N(6)-ACETYLLYSINE'>ALY</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3uvw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3uvw OCA], [https://pdbe.org/3uvw PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3uvw RCSB], [https://www.ebi.ac.uk/pdbsum/3uvw PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3uvw ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/BRD4_HUMAN BRD4_HUMAN] Note=A chromosomal aberration involving BRD4 is found in a rare, aggressive, and lethal carcinoma arising in midline organs of young people. Translocation t(15;19)(q14;p13) with NUT which produces a BRD4-NUT fusion protein.<ref>PMID:12543779</ref> <ref>PMID:11733348</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/BRD4_HUMAN BRD4_HUMAN] Plays a role in a process governing chromosomal dynamics during mitosis (By similarity). | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Bromodomains (BRDs) are protein interaction modules that specifically recognize epsilon-N-lysine acetylation motifs, a key event in the reading process of epigenetic marks. The 61 BRDs in the human genome cluster into eight families based on structure/sequence similarity. Here, we present 29 high-resolution crystal structures, covering all BRD families. Comprehensive crossfamily structural analysis identifies conserved and family-specific structural features that are necessary for specific acetylation-dependent substrate recognition. Screening of more than 30 representative BRDs against systematic histone-peptide arrays identifies new BRD substrates and reveals a strong influence of flanking posttranslational modifications, such as acetylation and phosphorylation, suggesting that BRDs recognize combinations of marks rather than singly acetylated sequences. We further uncovered a structural mechanism for the simultaneous binding and recognition of diverse diacetyl-containing peptides by BRD4. These data provide a foundation for structure-based drug design of specific inhibitors for this emerging target family. | |||
Histone recognition and large-scale structural analysis of the human bromodomain family.,Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Muller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S Cell. 2012 Mar 30;149(1):214-31. PMID:22464331<ref>PMID:22464331</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 3uvw" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
[[ | *[[Bromodomain-containing protein 3D structures|Bromodomain-containing protein 3D structures]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Arrowsmith CH]] | ||
[[Category: | [[Category: Bountra C]] | ||
[[Category: Edwards | [[Category: Edwards AM]] | ||
[[Category: Felletar | [[Category: Felletar I]] | ||
[[Category: Filippakopoulos | [[Category: Filippakopoulos P]] | ||
[[Category: Gileadi | [[Category: Gileadi O]] | ||
[[Category: Keates | [[Category: Keates T]] | ||
[[Category: Knapp | [[Category: Knapp S]] | ||
[[Category: Muniz | [[Category: Muniz J]] | ||
[[Category: Picaud | [[Category: Picaud S]] | ||
[[Category: Weigelt J]] | |||
[[Category: Weigelt | [[Category: Von Delft F]] | ||
[[Category: | |||
Latest revision as of 09:14, 17 October 2024
Crystal Structure of the first bromodomain of human BRD4 in complex with a diacetylated histone 4 peptide (H4K5acK8ac)Crystal Structure of the first bromodomain of human BRD4 in complex with a diacetylated histone 4 peptide (H4K5acK8ac)
Structural highlights
DiseaseBRD4_HUMAN Note=A chromosomal aberration involving BRD4 is found in a rare, aggressive, and lethal carcinoma arising in midline organs of young people. Translocation t(15;19)(q14;p13) with NUT which produces a BRD4-NUT fusion protein.[1] [2] FunctionBRD4_HUMAN Plays a role in a process governing chromosomal dynamics during mitosis (By similarity). Publication Abstract from PubMedBromodomains (BRDs) are protein interaction modules that specifically recognize epsilon-N-lysine acetylation motifs, a key event in the reading process of epigenetic marks. The 61 BRDs in the human genome cluster into eight families based on structure/sequence similarity. Here, we present 29 high-resolution crystal structures, covering all BRD families. Comprehensive crossfamily structural analysis identifies conserved and family-specific structural features that are necessary for specific acetylation-dependent substrate recognition. Screening of more than 30 representative BRDs against systematic histone-peptide arrays identifies new BRD substrates and reveals a strong influence of flanking posttranslational modifications, such as acetylation and phosphorylation, suggesting that BRDs recognize combinations of marks rather than singly acetylated sequences. We further uncovered a structural mechanism for the simultaneous binding and recognition of diverse diacetyl-containing peptides by BRD4. These data provide a foundation for structure-based drug design of specific inhibitors for this emerging target family. Histone recognition and large-scale structural analysis of the human bromodomain family.,Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Muller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S Cell. 2012 Mar 30;149(1):214-31. PMID:22464331[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|