2bre: Difference between revisions
No edit summary |
No edit summary |
||
(21 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==STRUCTURE OF A HSP90 INHIBITOR BOUND TO THE N-TERMINUS OF YEAST HSP90.== | ||
High-throughput screening identified the 3,4-diarylpyrazole CCT018159 as a | <StructureSection load='2bre' size='340' side='right'caption='[[2bre]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2bre]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2BRE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2BRE FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=KJ2:4-{4-[4-(3-AMINOPROPOXY)PHENYL]-1H-PYRAZOL-5-YL}-6-CHLOROBENZENE-1,3-DIOL'>KJ2</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2bre FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2bre OCA], [https://pdbe.org/2bre PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2bre RCSB], [https://www.ebi.ac.uk/pdbsum/2bre PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2bre ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/HSP82_YEAST HSP82_YEAST] Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. The nucleotide-free form of the dimer is found in an open conformation in which the N-termini are not dimerized and the complex is ready for client protein binding. Binding of ATP induces large conformational changes, resulting in the formation of a ring-like closed structure in which the N-terminal domains associate intramolecularly with the middle domain and also dimerize with each other, stimulating their intrinsic ATPase activity and acting as a clamp on the substrate. Finally, ATP hydrolysis results in the release of the substrate. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Required for growth at high temperatures.<ref>PMID:17114002</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/br/2bre_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2bre ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
High-throughput screening identified the 3,4-diarylpyrazole CCT018159 as a novel and potent (7.1 microM) inhibitor of Hsp90 ATPase activity. Here, we describe the synthesis of CCT018159 and a number of close analogues together with data on their biochemical properties. Some initial structure-activity relationships are discussed, as well as the crystal structure of CCT018159 bound to Hsp90. | |||
The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors.,Cheung KM, Matthews TP, James K, Rowlands MG, Boxall KJ, Sharp SY, Maloney A, Roe SM, Prodromou C, Pearl LH, Aherne GW, McDonald E, Workman P Bioorg Med Chem Lett. 2005 Jul 15;15(14):3338-43. PMID:15955698<ref>PMID:15955698</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2bre" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Heat Shock Protein structures|Heat Shock Protein structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Saccharomyces cerevisiae]] | [[Category: Saccharomyces cerevisiae]] | ||
[[Category: Pearl LH]] | |||
[[Category: Pearl | [[Category: Prodromou C]] | ||
[[Category: Prodromou | [[Category: Roe SM]] | ||
[[Category: Roe | |||
Latest revision as of 16:53, 13 December 2023
STRUCTURE OF A HSP90 INHIBITOR BOUND TO THE N-TERMINUS OF YEAST HSP90.STRUCTURE OF A HSP90 INHIBITOR BOUND TO THE N-TERMINUS OF YEAST HSP90.
Structural highlights
FunctionHSP82_YEAST Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. The nucleotide-free form of the dimer is found in an open conformation in which the N-termini are not dimerized and the complex is ready for client protein binding. Binding of ATP induces large conformational changes, resulting in the formation of a ring-like closed structure in which the N-terminal domains associate intramolecularly with the middle domain and also dimerize with each other, stimulating their intrinsic ATPase activity and acting as a clamp on the substrate. Finally, ATP hydrolysis results in the release of the substrate. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Required for growth at high temperatures.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHigh-throughput screening identified the 3,4-diarylpyrazole CCT018159 as a novel and potent (7.1 microM) inhibitor of Hsp90 ATPase activity. Here, we describe the synthesis of CCT018159 and a number of close analogues together with data on their biochemical properties. Some initial structure-activity relationships are discussed, as well as the crystal structure of CCT018159 bound to Hsp90. The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors.,Cheung KM, Matthews TP, James K, Rowlands MG, Boxall KJ, Sharp SY, Maloney A, Roe SM, Prodromou C, Pearl LH, Aherne GW, McDonald E, Workman P Bioorg Med Chem Lett. 2005 Jul 15;15(14):3338-43. PMID:15955698[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|