2y9r: Difference between revisions

No edit summary
No edit summary
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2y9r.png|left|200px]]


{{STRUCTURE_2y9r|  PDB=2y9r  |  SCENE= }}
==Crystal structure of the M10 domain of Titin==
 
<StructureSection load='2y9r' size='340' side='right'caption='[[2y9r]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
===CRYSTAL STRUCTURE OF THE M10 DOMAIN OF TITIN===
== Structural highlights ==
 
<table><tr><td colspan='2'>[[2y9r]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2Y9R OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2Y9R FirstGlance]. <br>
{{ABSTRACT_PUBMED_20133654}}
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9&#8491;</td></tr>
 
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=12P:DODECAETHYLENE+GLYCOL'>12P</scene></td></tr>
==About this Structure==
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2y9r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2y9r OCA], [https://pdbe.org/2y9r PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2y9r RCSB], [https://www.ebi.ac.uk/pdbsum/2y9r PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2y9r ProSAT]</span></td></tr>
[[2y9r]] is a 1 chain structure of [[Titin]] with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2Y9R OCA].  
</table>
== Disease ==
[https://www.uniprot.org/uniprot/TITIN_HUMAN TITIN_HUMAN] Defects in TTN are the cause of hereditary myopathy with early respiratory failure (HMERF) [MIM:[https://omim.org/entry/603689 603689]; also known as Edstrom myopathy. HMERF is an autosomal dominant, adult-onset myopathy with early respiratory muscle involvement.<ref>PMID:15802564</ref>  Defects in TTN are the cause of familial hypertrophic cardiomyopathy type 9 (CMH9) [MIM:[https://omim.org/entry/613765 613765]. Familial hypertrophic cardiomyopathy is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.<ref>PMID:10462489</ref>  Defects in TTN are the cause of cardiomyopathy dilated type 1G (CMD1G) [MIM:[https://omim.org/entry/604145 604145]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:11846417</ref> <ref>PMID:11788824</ref> <ref>PMID:16465475</ref>  Defects in TTN are the cause of tardive tibial muscular dystrophy (TMD) [MIM:[https://omim.org/entry/600334 600334]; also known as Udd myopathy. TMD is an autosomal dominant, late-onset distal myopathy. Muscle weakness and atrophy are usually confined to the anterior compartment of the lower leg, in particular the tibialis anterior muscle. Clinical symptoms usually occur at age 35-45 years or much later.<ref>PMID:12145747</ref> <ref>PMID:12891679</ref>  Defects in TTN are the cause of limb-girdle muscular dystrophy type 2J (LGMD2J) [MIM:[https://omim.org/entry/608807 608807]. LGMD2J is an autosomal recessive degenerative myopathy characterized by progressive weakness of the pelvic and shoulder girdle muscles. Severe disability is observed within 20 years of onset.  Defects in TTN are the cause of early-onset myopathy with fatal cardiomyopathy (EOMFC) [MIM:[https://omim.org/entry/611705 611705]. Early-onset myopathies are inherited muscle disorders that manifest typically from birth or infancy with hypotonia, muscle weakness, and delayed motor development. EOMFC is a titinopathy that, in contrast with the previously described examples, involves both heart and skeletal muscle, has a congenital onset, and is purely recessive. This phenotype is due to homozygous out-of-frame TTN deletions, which lead to a total absence of titin's C-terminal end from striated muscles and to secondary CAPN3 depletion.<ref>PMID:17444505</ref>
== Function ==
[https://www.uniprot.org/uniprot/TITIN_HUMAN TITIN_HUMAN] Key component in the assembly and functioning of vertebrate striated muscles. By providing connections at the level of individual microfilaments, it contributes to the fine balance of forces between the two halves of the sarcomere. The size and extensibility of the cross-links are the main determinants of sarcomere extensibility properties of muscle. In non-muscle cells, seems to play a role in chromosome condensation and chromosome segregation during mitosis. Might link the lamina network to chromatin or nuclear actin, or both during interphase.<ref>PMID:9804419</ref>


==See Also==
==See Also==
*[[Titin|Titin]]
*[[Titin 3D structures|Titin 3D structures]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:020133654</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Non-specific serine/threonine protein kinase]]
[[Category: Large Structures]]
[[Category: Fukuzawa, A.]]
[[Category: Fukuzawa A]]
[[Category: Gautel, M.]]
[[Category: Gautel M]]
[[Category: Pernigo, S.]]
[[Category: Pernigo S]]
[[Category: Steiner, R A.]]
[[Category: Steiner RA]]
[[Category: Immunoglobulin domain]]
[[Category: M-band]]
[[Category: Sarcomere]]
[[Category: Transferase]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA