1f7i: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1f7i.gif|left|200px]]<br /><applet load="1f7i" size="350" color="white" frame="true" align="right" spinBox="true"
caption="1f7i" />
'''SOLUTION STRUCTURE OF THE RNASE P RNA (M1 RNA) P4 STEM C70U MUTANT OLIGORIBONUCLEOTIDE COMPLEXED WITH COBALT (III) HEXAMINE ,NMR, ENSEMBLE OF 12 STRUCTURES'''<br />


==Overview==
==SOLUTION STRUCTURE OF THE RNASE P RNA (M1 RNA) P4 STEM C70U MUTANT OLIGORIBONUCLEOTIDE COMPLEXED WITH COBALT (III) HEXAMINE ,NMR, ENSEMBLE OF 12 STRUCTURES==
<StructureSection load='1f7i' size='340' side='right'caption='[[1f7i]]' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1f7i]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1F7I OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1F7I FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NCO:COBALT+HEXAMMINE(III)'>NCO</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1f7i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1f7i OCA], [https://pdbe.org/1f7i PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1f7i RCSB], [https://www.ebi.ac.uk/pdbsum/1f7i PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1f7i ProSAT]</span></td></tr>
</table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
We determined the solution structure of two 27-nt RNA hairpins and their complexes with cobalt(III)-hexammine (Co(NH3)3+(6)) by NMR spectroscopy. The RNA hairpins used in this study are the P4 region from Escherichia coli RNase P RNA and a C-to-U mutant that confers altered divalent metal-ion specificity (Ca2+ replaces Mg2+) for catalytic activity of this ribozyme. Co(NH3)3+(6) is a useful spectroscopic probe for Mg(H2O)2+(6)-binding sites because both complexes have octahedral symmetry and have similar radii. The thermodynamics of binding to both RNA hairpins was studied using chemical shift changes upon titration with Mg2+, Ca2+, and Co(NH3)3+(6). We found that the equilibrium binding constants for each of the metal ions was essentially unchanged when the P4 model RNA hairpin was mutated, although the NMR structures show that the RNA hairpins adopt different conformations. In the C-to-U mutant a C.G base pair is replaced by U.G, and the conserved bulged uridine in the P4 wild-type stem shifts in the 3' direction by 1 nt. Intermolecular NOE cross-peaks between Co(NH3)3+(6) and RNA protons were used to locate the site of Co(NH3)3+(6) binding to both RNA hairpins. The metal ion binds in the major groove near a bulge loop, but is shifted 5' by more than 1 bp in the mutant. The change of the metal-ion binding site provides a possible explanation for changes in catalytic activity of the mutant RNase P in the presence of Ca2+.
We determined the solution structure of two 27-nt RNA hairpins and their complexes with cobalt(III)-hexammine (Co(NH3)3+(6)) by NMR spectroscopy. The RNA hairpins used in this study are the P4 region from Escherichia coli RNase P RNA and a C-to-U mutant that confers altered divalent metal-ion specificity (Ca2+ replaces Mg2+) for catalytic activity of this ribozyme. Co(NH3)3+(6) is a useful spectroscopic probe for Mg(H2O)2+(6)-binding sites because both complexes have octahedral symmetry and have similar radii. The thermodynamics of binding to both RNA hairpins was studied using chemical shift changes upon titration with Mg2+, Ca2+, and Co(NH3)3+(6). We found that the equilibrium binding constants for each of the metal ions was essentially unchanged when the P4 model RNA hairpin was mutated, although the NMR structures show that the RNA hairpins adopt different conformations. In the C-to-U mutant a C.G base pair is replaced by U.G, and the conserved bulged uridine in the P4 wild-type stem shifts in the 3' direction by 1 nt. Intermolecular NOE cross-peaks between Co(NH3)3+(6) and RNA protons were used to locate the site of Co(NH3)3+(6) binding to both RNA hairpins. The metal ion binds in the major groove near a bulge loop, but is shifted 5' by more than 1 bp in the mutant. The change of the metal-ion binding site provides a possible explanation for changes in catalytic activity of the mutant RNase P in the presence of Ca2+.


==About this Structure==
Solution structure and metal-ion binding of the P4 element from bacterial RNase P RNA.,Schmitz M, Tinoco I Jr RNA. 2000 Sep;6(9):1212-25. PMID:10999599<ref>PMID:10999599</ref>
1F7I is a [http://en.wikipedia.org/wiki/Protein_complex Protein complex] structure of sequences from [http://en.wikipedia.org/wiki/ ] with <scene name='pdbligand=NCO:'>NCO</scene> as [http://en.wikipedia.org/wiki/ligand ligand]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1F7I OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Solution structure and metal-ion binding of the P4 element from bacterial RNase P RNA., Schmitz M, Tinoco I Jr, RNA. 2000 Sep;6(9):1212-25. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=10999599 10999599]
</div>
[[Category: Protein complex]]
<div class="pdbe-citations 1f7i" style="background-color:#fffaf0;"></div>
[[Category: Jr., I Tinoco.]]
[[Category: Schmitz, M.]]
[[Category: NCO]]
[[Category: c70u mutant]]
[[Category: cobalt (iii) hexammine complex]]
[[Category: metal binding site]]
[[Category: metal complex]]
[[Category: p4 stem]]
[[Category: ribonuclease p]]
[[Category: ribozyme]]
[[Category: transfer rna processing]]


''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 12:35:41 2008''
==See Also==
*[[Ribozyme 3D structures|Ribozyme 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Schmitz M]]
[[Category: Tinoco Jr I]]

Latest revision as of 14:49, 22 November 2023

SOLUTION STRUCTURE OF THE RNASE P RNA (M1 RNA) P4 STEM C70U MUTANT OLIGORIBONUCLEOTIDE COMPLEXED WITH COBALT (III) HEXAMINE ,NMR, ENSEMBLE OF 12 STRUCTURESSOLUTION STRUCTURE OF THE RNASE P RNA (M1 RNA) P4 STEM C70U MUTANT OLIGORIBONUCLEOTIDE COMPLEXED WITH COBALT (III) HEXAMINE ,NMR, ENSEMBLE OF 12 STRUCTURES

Structural highlights

1f7i is a 1 chain structure. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

We determined the solution structure of two 27-nt RNA hairpins and their complexes with cobalt(III)-hexammine (Co(NH3)3+(6)) by NMR spectroscopy. The RNA hairpins used in this study are the P4 region from Escherichia coli RNase P RNA and a C-to-U mutant that confers altered divalent metal-ion specificity (Ca2+ replaces Mg2+) for catalytic activity of this ribozyme. Co(NH3)3+(6) is a useful spectroscopic probe for Mg(H2O)2+(6)-binding sites because both complexes have octahedral symmetry and have similar radii. The thermodynamics of binding to both RNA hairpins was studied using chemical shift changes upon titration with Mg2+, Ca2+, and Co(NH3)3+(6). We found that the equilibrium binding constants for each of the metal ions was essentially unchanged when the P4 model RNA hairpin was mutated, although the NMR structures show that the RNA hairpins adopt different conformations. In the C-to-U mutant a C.G base pair is replaced by U.G, and the conserved bulged uridine in the P4 wild-type stem shifts in the 3' direction by 1 nt. Intermolecular NOE cross-peaks between Co(NH3)3+(6) and RNA protons were used to locate the site of Co(NH3)3+(6) binding to both RNA hairpins. The metal ion binds in the major groove near a bulge loop, but is shifted 5' by more than 1 bp in the mutant. The change of the metal-ion binding site provides a possible explanation for changes in catalytic activity of the mutant RNase P in the presence of Ca2+.

Solution structure and metal-ion binding of the P4 element from bacterial RNase P RNA.,Schmitz M, Tinoco I Jr RNA. 2000 Sep;6(9):1212-25. PMID:10999599[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Schmitz M, Tinoco I Jr. Solution structure and metal-ion binding of the P4 element from bacterial RNase P RNA. RNA. 2000 Sep;6(9):1212-25. PMID:10999599
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA