2xdc: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Tag: Manual revert
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2xdc.png|left|200px]]


{{STRUCTURE_2xdc| PDB=2xdc | SCENE= }}
==Structure of linear gramicidin D obtained using Type I crystals grown in a lipid cubic phase.==
<StructureSection load='2xdc' size='340' side='right'caption='[[2xdc]], [[Resolution|resolution]] 1.70&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2xdc]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Brevibacillus_brevis Brevibacillus brevis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2XDC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2XDC FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=15P:POLYETHYLENE+GLYCOL+(N=34)'>15P</scene>, <scene name='pdbligand=DLE:D-LEUCINE'>DLE</scene>, <scene name='pdbligand=DVA:D-VALINE'>DVA</scene>, <scene name='pdbligand=ETA:ETHANOLAMINE'>ETA</scene>, <scene name='pdbligand=FVA:N-FORMYL-L-VALINE'>FVA</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PRD_000150:GRAMICIDIN+A'>PRD_000150</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2xdc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2xdc OCA], [https://pdbe.org/2xdc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2xdc RCSB], [https://www.ebi.ac.uk/pdbsum/2xdc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2xdc ProSAT]</span></td></tr>
</table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Structure determination of membrane proteins by crystallographic means has been facilitated by crystallization in lipidic mesophases. It has been suggested, however, that this so-called in meso method, as originally implemented, would not apply to small protein targets having &lt;/=4 transmembrane crossings. In our study, the hypothesis that the inherent flexibility of the mesophase would enable crystallogenesis of small proteins was tested using a transmembrane pentadecapeptide, linear gramicidin, which produced structure-grade crystals. This result suggests that the in meso method should be considered as a viable means for high-resolution structure determination of integral membrane peptides, many of which are predicted to be coded for in the human genome.


===Structure of linear gramicidin D obtained using Type I crystals grown in a lipid cubic phase.===
Crystallizing transmembrane peptides in lipidic mesophases.,Hofer N, Aragao D, Caffrey M Biophys J. 2010 Aug 4;99(3):L23-5. PMID:20682243<ref>PMID:20682243</ref>


{{ABSTRACT_PUBMED_20682243}}
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
==About this Structure==
<div class="pdbe-citations 2xdc" style="background-color:#fffaf0;"></div>
[[2xdc]] is a 6 chain structure of [[Gramicidin]] with sequence from [http://en.wikipedia.org/wiki/Brevibacillus_brevis Brevibacillus brevis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2XDC OCA].


==See Also==
==See Also==
*[[Gramicidin|Gramicidin]]
*[[Gramicidin|Gramicidin]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:020682243</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Brevibacillus brevis]]
[[Category: Brevibacillus brevis]]
[[Category: Aragao, D.]]
[[Category: Large Structures]]
[[Category: Caffrey, M.]]
[[Category: Aragao D]]
[[Category: Hoefer, N.]]
[[Category: Caffrey M]]
[[Category: Antibacterial]]
[[Category: Hoefer N]]
[[Category: Antibiotic]]
[[Category: Antifungal]]
[[Category: Bilayer]]
[[Category: Ion channel]]
[[Category: Lipid cubic phase]]
[[Category: Mesophase sponge phase]]
[[Category: Monoolein]]

Latest revision as of 08:35, 17 October 2024

Structure of linear gramicidin D obtained using Type I crystals grown in a lipid cubic phase.Structure of linear gramicidin D obtained using Type I crystals grown in a lipid cubic phase.

Structural highlights

2xdc is a 6 chain structure with sequence from Brevibacillus brevis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.7Å
Ligands:, , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Structure determination of membrane proteins by crystallographic means has been facilitated by crystallization in lipidic mesophases. It has been suggested, however, that this so-called in meso method, as originally implemented, would not apply to small protein targets having </=4 transmembrane crossings. In our study, the hypothesis that the inherent flexibility of the mesophase would enable crystallogenesis of small proteins was tested using a transmembrane pentadecapeptide, linear gramicidin, which produced structure-grade crystals. This result suggests that the in meso method should be considered as a viable means for high-resolution structure determination of integral membrane peptides, many of which are predicted to be coded for in the human genome.

Crystallizing transmembrane peptides in lipidic mesophases.,Hofer N, Aragao D, Caffrey M Biophys J. 2010 Aug 4;99(3):L23-5. PMID:20682243[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hofer N, Aragao D, Caffrey M. Crystallizing transmembrane peptides in lipidic mesophases. Biophys J. 2010 Aug 4;99(3):L23-5. PMID:20682243 doi:10.1016/j.bpj.2010.05.011

2xdc, resolution 1.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA