2fz8: Difference between revisions

No edit summary
No edit summary
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2fz8.jpg|left|200px]]<br /><applet load="2fz8" size="350" color="white" frame="true" align="right" spinBox="true"
caption="2fz8, resolution 1.48&Aring;" />
'''Human Aldose reductase complexed with inhibitor zopolrestat at 1.48 A(1 day soaking).'''<br />


==Overview==
==Human Aldose reductase complexed with inhibitor zopolrestat at 1.48 A(1 day soaking).==
In structure-based drug design, accurate crystal structure determination, of protein-ligand complexes is of utmost importance in order to elucidate, the binding characteristics of a putative lead to a given target. It is, the starting point for further design hypotheses to predict novel leads, with improved properties. Often, crystal structure determination is, regarded as ultimate proof for ligand binding providing detailed insight, into the specific binding mode of the ligand to the protein. This widely, accepted practise relies on the assumption that the crystal structure of a, given protein-ligand complex is unique and independent of the protocol, applied to produce the crystals. We present two examples indicating that, this assumption is not generally given, even though the composition of the, mother liquid for crystallisation was kept unchanged: Multiple crystal, structure determinations of aldose reductase complexes obtained under, varying crystallisation protocols concerning soaking and crystallisation, exposure times were performed resulting in a total of 17 complete data, sets and ten refined crystal structures, eight in complex with zopolrestat, and two complexed with tolrestat. In the first example, a flip of a, peptide bond is observed, obviously depending on the crystallisation, protocol with respect to soaking and co-crystallisation conditions. This, peptide flip is accompanied by a rupture of an H-bond formed to the bound, ligand zopolrestat. The indicated enhanced local mobility of the complex, is in agreement with the results of molecular dynamics simulations. As a, second example, the aldose reductase-tolrestat complex is studied., Unexpectedly, two structures could be obtained: one with one, and a second, with four inhibitor molecules bound to the protein. They are located in, and near the binding pocket facilitated by crystal packing effects., Accommodation of the four ligand molecules is accompanied by pronounced, shifts concerning two helices interacting with the additional ligands.
<StructureSection load='2fz8' size='340' side='right'caption='[[2fz8]], [[Resolution|resolution]] 1.48&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2fz8]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2FZ8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2FZ8 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.48&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene>, <scene name='pdbligand=ZST:3,4-DIHYDRO-4-OXO-3-((5-TRIFLUOROMETHYL-2-BENZOTHIAZOLYL)METHYL)-1-PHTHALAZINE+ACETIC+ACID'>ZST</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2fz8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2fz8 OCA], [https://pdbe.org/2fz8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2fz8 RCSB], [https://www.ebi.ac.uk/pdbsum/2fz8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2fz8 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/ALDR_HUMAN ALDR_HUMAN] Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols with a broad range of catalytic efficiencies.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/fz/2fz8_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2fz8 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
In structure-based drug design, accurate crystal structure determination of protein-ligand complexes is of utmost importance in order to elucidate the binding characteristics of a putative lead to a given target. It is the starting point for further design hypotheses to predict novel leads with improved properties. Often, crystal structure determination is regarded as ultimate proof for ligand binding providing detailed insight into the specific binding mode of the ligand to the protein. This widely accepted practise relies on the assumption that the crystal structure of a given protein-ligand complex is unique and independent of the protocol applied to produce the crystals. We present two examples indicating that this assumption is not generally given, even though the composition of the mother liquid for crystallisation was kept unchanged: Multiple crystal structure determinations of aldose reductase complexes obtained under varying crystallisation protocols concerning soaking and crystallisation exposure times were performed resulting in a total of 17 complete data sets and ten refined crystal structures, eight in complex with zopolrestat and two complexed with tolrestat. In the first example, a flip of a peptide bond is observed, obviously depending on the crystallisation protocol with respect to soaking and co-crystallisation conditions. This peptide flip is accompanied by a rupture of an H-bond formed to the bound ligand zopolrestat. The indicated enhanced local mobility of the complex is in agreement with the results of molecular dynamics simulations. As a second example, the aldose reductase-tolrestat complex is studied. Unexpectedly, two structures could be obtained: one with one, and a second with four inhibitor molecules bound to the protein. They are located in and near the binding pocket facilitated by crystal packing effects. Accommodation of the four ligand molecules is accompanied by pronounced shifts concerning two helices interacting with the additional ligands.


==About this Structure==
Expect the unexpected or caveat for drug designers: multiple structure determinations using aldose reductase crystals treated under varying soaking and co-crystallisation conditions.,Steuber H, Zentgraf M, Gerlach C, Sotriffer CA, Heine A, Klebe G J Mol Biol. 2006 Oct 13;363(1):174-87. Epub 2006 Aug 9. PMID:16952371<ref>PMID:16952371</ref>
2FZ8 is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] with <scene name='pdbligand=NAP:'>NAP</scene> and <scene name='pdbligand=ZST:'>ZST</scene> as [http://en.wikipedia.org/wiki/ligands ligands]. Active as [http://en.wikipedia.org/wiki/Aldehyde_reductase Aldehyde reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.1.1.21 1.1.1.21] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2FZ8 OCA].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Expect the unexpected or caveat for drug designers: multiple structure determinations using aldose reductase crystals treated under varying soaking and co-crystallisation conditions., Steuber H, Zentgraf M, Gerlach C, Sotriffer CA, Heine A, Klebe G, J Mol Biol. 2006 Oct 13;363(1):174-87. Epub 2006 Aug 9. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=16952371 16952371]
</div>
[[Category: Aldehyde reductase]]
<div class="pdbe-citations 2fz8" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[Aldose reductase 3D structures|Aldose reductase 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Single protein]]
[[Category: Large Structures]]
[[Category: Gerlach, C.]]
[[Category: Gerlach C]]
[[Category: Heine, A.]]
[[Category: Heine A]]
[[Category: Klebe, G.]]
[[Category: Klebe G]]
[[Category: Sotriffer, C.A.]]
[[Category: Sotriffer CA]]
[[Category: Steuber, H.]]
[[Category: Steuber H]]
[[Category: Zentgraf, M.]]
[[Category: Zentgraf M]]
[[Category: NAP]]
[[Category: ZST]]
[[Category: backbone flip]]
[[Category: tim-barrel]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri Feb 15 17:26:59 2008''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA