2nsx: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
New page: left|200px <!-- The line below this paragraph, containing "STRUCTURE_2nsx", creates the "Structure Box" on the page. You may change the PDB parameter (which sets the PD...
 
No edit summary
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2nsx.png|left|200px]]


<!--
==Structure of acid-beta-glucosidase with pharmacological chaperone provides insight into Gaucher disease==
The line below this paragraph, containing "STRUCTURE_2nsx", creates the "Structure Box" on the page.
<StructureSection load='2nsx' size='340' side='right'caption='[[2nsx]], [[Resolution|resolution]] 2.11&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[2nsx]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2NSX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2NSX FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.11&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=IFM:5-HYDROXYMETHYL-3,4-DIHYDROXYPIPERIDINE'>IFM</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
{{STRUCTURE_2nsx| PDB=2nsx |  SCENE= }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2nsx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2nsx OCA], [https://pdbe.org/2nsx PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2nsx RCSB], [https://www.ebi.ac.uk/pdbsum/2nsx PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2nsx ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/GBA1_HUMAN GBA1_HUMAN] Gaucher disease type 3;Gaucher disease-ophthalmoplegia-cardiovascular calcification syndrome;Gaucher disease type 1;Hereditary late-onset Parkinson disease;Gaucher disease type 2;Fetal Gaucher disease;NON RARE IN EUROPE: Dementia with Lewy body;NON RARE IN EUROPE: Parkinson disease. The disease is caused by variants affecting the gene represented in this entry.  The disease is caused by variants affecting the gene represented in this entry.  The disease is caused by variants affecting the gene represented in this entry.  The disease is caused by variants affecting the gene represented in this entry.  The disease is caused by variants affecting the gene represented in this entry.  The disease is caused by variants affecting the gene represented in this entry. Perinatal lethal Gaucher disease is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders.<ref>PMID:10352942</ref>  Disease susceptibility may be associated with variants affecting the gene represented in this entry.
== Function ==
[https://www.uniprot.org/uniprot/GBA1_HUMAN GBA1_HUMAN] Glucosylceramidase that catalyzes, within the lysosomal compartment, the hydrolysis of glucosylceramides/GlcCers (such as beta-D-glucosyl-(1<->1')-N-acylsphing-4-enine) into free ceramides (such as N-acylsphing-4-enine) and glucose (PubMed:15916907, PubMed:24211208, PubMed:32144204, PubMed:9201993). Plays a central role in the degradation of complex lipids and the turnover of cellular membranes (PubMed:27378698). Through the production of ceramides, participates in the PKC-activated salvage pathway of ceramide formation (PubMed:19279011). Catalyzes the glucosylation of cholesterol, through a transglucosylation reaction where glucose is transferred from GlcCer to cholesterol (PubMed:24211208, PubMed:26724485, PubMed:32144204). GlcCer containing mono-unsaturated fatty acids (such as beta-D-glucosyl-N-(9Z-octadecenoyl)-sphing-4-enine) are preferred as glucose donors for cholesterol glucosylation when compared with GlcCer containing same chain length of saturated fatty acids (such as beta-D-glucosyl-N-octadecanoyl-sphing-4-enine) (PubMed:24211208). Under specific conditions, may alternatively catalyze the reverse reaction, transferring glucose from cholesteryl 3-beta-D-glucoside to ceramide (Probable) (PubMed:26724485). Can also hydrolyze cholesteryl 3-beta-D-glucoside producing glucose and cholesterol (PubMed:24211208, PubMed:26724485). Catalyzes the hydrolysis of galactosylceramides/GalCers (such as beta-D-galactosyl-(1<->1')-N-acylsphing-4-enine), as well as the transfer of galactose between GalCers and cholesterol in vitro, but with lower activity than with GlcCers (PubMed:32144204). Contrary to GlcCer and GalCer, xylosylceramide/XylCer (such as beta-D-xyosyl-(1<->1')-N-acylsphing-4-enine) is not a good substrate for hydrolysis, however it is a good xylose donor for transxylosylation activity to form cholesteryl 3-beta-D-xyloside (PubMed:33361282).<ref>PMID:15916907</ref> <ref>PMID:19279011</ref> <ref>PMID:24211208</ref> <ref>PMID:26724485</ref> <ref>PMID:27378698</ref> <ref>PMID:32144204</ref> <ref>PMID:33361282</ref> <ref>PMID:9201993</ref> <ref>PMID:32144204</ref>  
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ns/2nsx_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2nsx ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Gaucher disease results from mutations in the lysosomal enzyme acid beta-glucosidase (GCase). Although enzyme replacement therapy has improved the health of some affected individuals, such as those with the prevalent N370S mutation, oral treatment with pharmacological chaperones may be therapeutic in a wider range of tissue compartments by restoring sufficient activity of endogenous mutant GCase. Here we demonstrate that isofagomine (IFG, 1) binds to the GCase active site, and both increases GCase activity in cell lysates and restores lysosomal trafficking in cells containing N370S mutant GCase. We also compare the crystal structures of IFG-bound GCase at low pH with those of glycerol-bound GCase at low pH and apo-GCase at neutral pH. Our data indicate that IFG induces active GCase, which is secured by interactions with Asn370. The design of small molecules that stabilize substrate-bound conformations of mutant proteins may be a general therapeutic strategy for diseases caused by protein misfolding and mistrafficking.


===Structure of acid-beta-glucosidase with pharmacological chaperone provides insight into Gaucher disease===
Structure of acid beta-glucosidase with pharmacological chaperone provides insight into Gaucher disease.,Lieberman RL, Wustman BA, Huertas P, Powe AC Jr, Pine CW, Khanna R, Schlossmacher MG, Ringe D, Petsko GA Nat Chem Biol. 2007 Feb;3(2):101-7. Epub 2006 Dec 24. PMID:17187079<ref>PMID:17187079</ref>


 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
<!--
</div>
The line below this paragraph, {{ABSTRACT_PUBMED_17187079}}, adds the Publication Abstract to the page
<div class="pdbe-citations 2nsx" style="background-color:#fffaf0;"></div>
(as it appears on PubMed at http://www.pubmed.gov), where 17187079 is the PubMed ID number.
-->
{{ABSTRACT_PUBMED_17187079}}
 
==About this Structure==
[[2nsx]] is a 4 chain structure of [[Acid-beta-glucosidase]] with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2NSX OCA].


==See Also==
==See Also==
*[[Acid-beta-glucosidase|Acid-beta-glucosidase]]
*[[Acid-beta-glucosidase|Acid-beta-glucosidase]]
*[[Treatment of Gaucher disease|Treatment of Gaucher disease]]
*[[Acid-beta-glucosidase 3D structures|Acid-beta-glucosidase 3D structures]]
 
*[[Beta-glucosidase|Beta-glucosidase]]
==Reference==
== References ==
<ref group="xtra">PMID:017187079</ref><references group="xtra"/>
<references/>
[[Category: Glucosylceramidase]]
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Lieberman, R L.]]
[[Category: Large Structures]]
[[Category: Petsko, G A.]]
[[Category: Lieberman RL]]
[[Category: Ringe, D.]]
[[Category: Petsko GA]]
[[Category: Hydrolase]]
[[Category: Ringe D]]
[[Category: Tim-barrel glycosidase cerezyme hydrolysis]]

Latest revision as of 12:46, 25 December 2024

Structure of acid-beta-glucosidase with pharmacological chaperone provides insight into Gaucher diseaseStructure of acid-beta-glucosidase with pharmacological chaperone provides insight into Gaucher disease

Structural highlights

2nsx is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.11Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

GBA1_HUMAN Gaucher disease type 3;Gaucher disease-ophthalmoplegia-cardiovascular calcification syndrome;Gaucher disease type 1;Hereditary late-onset Parkinson disease;Gaucher disease type 2;Fetal Gaucher disease;NON RARE IN EUROPE: Dementia with Lewy body;NON RARE IN EUROPE: Parkinson disease. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. Perinatal lethal Gaucher disease is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders.[1] Disease susceptibility may be associated with variants affecting the gene represented in this entry.

Function

GBA1_HUMAN Glucosylceramidase that catalyzes, within the lysosomal compartment, the hydrolysis of glucosylceramides/GlcCers (such as beta-D-glucosyl-(1<->1')-N-acylsphing-4-enine) into free ceramides (such as N-acylsphing-4-enine) and glucose (PubMed:15916907, PubMed:24211208, PubMed:32144204, PubMed:9201993). Plays a central role in the degradation of complex lipids and the turnover of cellular membranes (PubMed:27378698). Through the production of ceramides, participates in the PKC-activated salvage pathway of ceramide formation (PubMed:19279011). Catalyzes the glucosylation of cholesterol, through a transglucosylation reaction where glucose is transferred from GlcCer to cholesterol (PubMed:24211208, PubMed:26724485, PubMed:32144204). GlcCer containing mono-unsaturated fatty acids (such as beta-D-glucosyl-N-(9Z-octadecenoyl)-sphing-4-enine) are preferred as glucose donors for cholesterol glucosylation when compared with GlcCer containing same chain length of saturated fatty acids (such as beta-D-glucosyl-N-octadecanoyl-sphing-4-enine) (PubMed:24211208). Under specific conditions, may alternatively catalyze the reverse reaction, transferring glucose from cholesteryl 3-beta-D-glucoside to ceramide (Probable) (PubMed:26724485). Can also hydrolyze cholesteryl 3-beta-D-glucoside producing glucose and cholesterol (PubMed:24211208, PubMed:26724485). Catalyzes the hydrolysis of galactosylceramides/GalCers (such as beta-D-galactosyl-(1<->1')-N-acylsphing-4-enine), as well as the transfer of galactose between GalCers and cholesterol in vitro, but with lower activity than with GlcCers (PubMed:32144204). Contrary to GlcCer and GalCer, xylosylceramide/XylCer (such as beta-D-xyosyl-(1<->1')-N-acylsphing-4-enine) is not a good substrate for hydrolysis, however it is a good xylose donor for transxylosylation activity to form cholesteryl 3-beta-D-xyloside (PubMed:33361282).[2] [3] [4] [5] [6] [7] [8] [9] [10]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Gaucher disease results from mutations in the lysosomal enzyme acid beta-glucosidase (GCase). Although enzyme replacement therapy has improved the health of some affected individuals, such as those with the prevalent N370S mutation, oral treatment with pharmacological chaperones may be therapeutic in a wider range of tissue compartments by restoring sufficient activity of endogenous mutant GCase. Here we demonstrate that isofagomine (IFG, 1) binds to the GCase active site, and both increases GCase activity in cell lysates and restores lysosomal trafficking in cells containing N370S mutant GCase. We also compare the crystal structures of IFG-bound GCase at low pH with those of glycerol-bound GCase at low pH and apo-GCase at neutral pH. Our data indicate that IFG induces active GCase, which is secured by interactions with Asn370. The design of small molecules that stabilize substrate-bound conformations of mutant proteins may be a general therapeutic strategy for diseases caused by protein misfolding and mistrafficking.

Structure of acid beta-glucosidase with pharmacological chaperone provides insight into Gaucher disease.,Lieberman RL, Wustman BA, Huertas P, Powe AC Jr, Pine CW, Khanna R, Schlossmacher MG, Ringe D, Petsko GA Nat Chem Biol. 2007 Feb;3(2):101-7. Epub 2006 Dec 24. PMID:17187079[11]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Stone DL, van Diggelen OP, de Klerk JB, Gaillard JL, Niermeijer MF, Willemsen R, Tayebi N, Sidransky E. Is the perinatal lethal form of Gaucher disease more common than classic type 2 Gaucher disease? Eur J Hum Genet. 1999 May-Jun;7(4):505-9. PMID:10352942 doi:10.1038/sj.ejhg.5200315
  2. Ron I, Dagan A, Gatt S, Pasmanik-Chor M, Horowitz M. Use of fluorescent substrates for characterization of Gaucher disease mutations. Blood Cells Mol Dis. 2005 Jul-Aug;35(1):57-65. PMID:15916907 doi:10.1016/j.bcmd.2005.03.006
  3. Kitatani K, Sheldon K, Rajagopalan V, Anelli V, Jenkins RW, Sun Y, Grabowski GA, Obeid LM, Hannun YA. Involvement of acid beta-glucosidase 1 in the salvage pathway of ceramide formation. J Biol Chem. 2009 May 8;284(19):12972-8. PMID:19279011 doi:10.1074/jbc.M802790200
  4. Akiyama H, Kobayashi S, Hirabayashi Y, Murakami-Murofushi K. Cholesterol glucosylation is catalyzed by transglucosylation reaction of β-glucosidase 1. Biochem Biophys Res Commun. 2013 Nov 29;441(4):838-43. PMID:24211208 doi:10.1016/j.bbrc.2013.10.145
  5. Marques AR, Mirzaian M, Akiyama H, Wisse P, Ferraz MJ, Gaspar P, Ghauharali-van der Vlugt K, Meijer R, Giraldo P, Alfonso P, Irún P, Dahl M, Karlsson S, Pavlova EV, Cox TM, Scheij S, Verhoek M, Ottenhoff R, van Roomen CP, Pannu NS, van Eijk M, Dekker N, Boot RG, Overkleeft HS, Blommaart E, Hirabayashi Y, Aerts JM. Glucosylated cholesterol in mammalian cells and tissues: formation and degradation by multiple cellular β-glucosidases. J Lipid Res. 2016 Mar;57(3):451-63. PMID:26724485 doi:10.1194/jlr.M064923
  6. Magalhaes J, Gegg ME, Migdalska-Richards A, Doherty MK, Whitfield PD, Schapira AH. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease. Hum Mol Genet. 2016 Aug 15;25(16):3432-3445. PMID:27378698 doi:10.1093/hmg/ddw185
  7. Akiyama H, Ide M, Nagatsuka Y, Sayano T, Nakanishi E, Uemura N, Yuyama K, Yamaguchi Y, Kamiguchi H, Takahashi R, Aerts JMFG, Greimel P, Hirabayashi Y. Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol. J Biol Chem. 2020 Apr 17;295(16):5257-5277. PMID:32144204 doi:10.1074/jbc.RA119.012502
  8. Boer DE, Mirzaian M, Ferraz MJ, Zwiers KC, Baks MV, Hazeu MD, Ottenhoff R, Marques ARA, Meijer R, Roos JCP, Cox TM, Boot RG, Pannu N, Overkleeft HS, Artola M, Aerts JM. Human glucocerebrosidase mediates formation of xylosyl-cholesterol by β-xylosidase and transxylosidase reactions. J Lipid Res. 2021;62:100018. PMID:33361282 doi:10.1194/jlr.RA120001043
  9. Vaccaro AM, Tatti M, Ciaffoni F, Salvioli R, Barca A, Scerch C. Effect of saposins A and C on the enzymatic hydrolysis of liposomal glucosylceramide. J Biol Chem. 1997 Jul 4;272(27):16862-7. PMID:9201993 doi:10.1074/jbc.272.27.16862
  10. Akiyama H, Ide M, Nagatsuka Y, Sayano T, Nakanishi E, Uemura N, Yuyama K, Yamaguchi Y, Kamiguchi H, Takahashi R, Aerts JMFG, Greimel P, Hirabayashi Y. Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol. J Biol Chem. 2020 Apr 17;295(16):5257-5277. PMID:32144204 doi:10.1074/jbc.RA119.012502
  11. Lieberman RL, Wustman BA, Huertas P, Powe AC Jr, Pine CW, Khanna R, Schlossmacher MG, Ringe D, Petsko GA. Structure of acid beta-glucosidase with pharmacological chaperone provides insight into Gaucher disease. Nat Chem Biol. 2007 Feb;3(2):101-7. Epub 2006 Dec 24. PMID:17187079 doi:http://dx.doi.org/10.1038/nchembio850

2nsx, resolution 2.11Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA