3odq: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:3odq.png|left|200px]]


<!--
==Structure of a Crystal Form of Human Methemoglobin Indicative of Fiber Formation==
The line below this paragraph, containing "STRUCTURE_3odq", creates the "Structure Box" on the page.
<StructureSection load='3odq' size='340' side='right'caption='[[3odq]], [[Resolution|resolution]] 3.10&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[3odq]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ODQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3ODQ FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.1&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene></td></tr>
{{STRUCTURE_3odq|  PDB=3odq  |  SCENE= }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3odq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3odq OCA], [https://pdbe.org/3odq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3odq RCSB], [https://www.ebi.ac.uk/pdbsum/3odq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3odq ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/HBA_HUMAN HBA_HUMAN] Defects in HBA1 may be a cause of Heinz body anemias (HEIBAN) [MIM:[https://omim.org/entry/140700 140700]. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.<ref>PMID:2833478</ref>  Defects in HBA1 are the cause of alpha-thalassemia (A-THAL) [MIM:[https://omim.org/entry/604131 604131]. The thalassemias are the most common monogenic diseases and occur mostly in Mediterranean and Southeast Asian populations. The hallmark of alpha-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. The level of alpha chain production can range from none to very nearly normal levels. Deletion of both copies of each of the two alpha-globin genes causes alpha(0)-thalassemia, also known as homozygous alpha thalassemia. Due to the complete absence of alpha chains, the predominant fetal hemoglobin is a tetramer of gamma-chains (Bart hemoglobin) that has essentially no oxygen carrying capacity. This causes oxygen starvation in the fetal tissues leading to prenatal lethality or early neonatal death. The loss of three alpha genes results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia known as hemoglobin H disease. Untreated, most patients die in childhood or early adolescence. The loss of two alpha genes results in mild alpha-thalassemia, also known as heterozygous alpha-thalassemia. Affected individuals have small red cells and a mild anemia (microcytosis). If three of the four alpha-globin genes are functional, individuals are completely asymptomatic. Some rare forms of alpha-thalassemia are due to point mutations (non-deletional alpha-thalassemia). The thalassemic phenotype is due to unstable globin alpha chains that are rapidly catabolized prior to formation of the alpha-beta heterotetramers.  Note=Alpha(0)-thalassemia is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders.  Defects in HBA1 are the cause of hemoglobin H disease (HBH) [MIM:[https://omim.org/entry/613978 613978]. HBH is a form of alpha-thalassemia due to the loss of three alpha genes. This results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia. Untreated, most patients die in childhood or early adolescence.<ref>PMID:10569720</ref>
== Function ==
[https://www.uniprot.org/uniprot/HBA_HUMAN HBA_HUMAN] Involved in oxygen transport from the lung to the various peripheral tissues.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Human methemoglobin was crystallized in a unique unit cell and its structure was solved by molecular replacement. The hexagonal unit cell has unit-cell parameters a = b = 54.6, c = 677.4 A, with symmetry consistent with space group P622. The unit cell has the second highest aspect ratio of all unit cells contained in the PDB. The 12 molecules in the unit cell describe a right-handed helical filament having no polarity, which is different from the filament composed of HbS fibers, which is the only other well characterized fiber of human hemoglobin. The filaments reported here can be related to canonical sickle-cell hemoglobin filaments and to an alternative sickle-cell filament deduced from fiber diffraction by slight modifications of intermolecular contacts.


===Structure of a Crystal Form of Human Methemoglobin Indicative of Fiber Formation===
Structure of a crystal form of human methemoglobin indicative of fiber formation.,Larson SB, Day JS, Nguyen C, Cudney R, McPherson A Acta Crystallogr D Biol Crystallogr. 2010 Dec;66(Pt 12):1316-22. Epub 2010, Nov 16. PMID:21123872<ref>PMID:21123872</ref>


 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
<!--
</div>
The line below this paragraph, {{ABSTRACT_PUBMED_21123872}}, adds the Publication Abstract to the page
<div class="pdbe-citations 3odq" style="background-color:#fffaf0;"></div>
(as it appears on PubMed at http://www.pubmed.gov), where 21123872 is the PubMed ID number.
-->
{{ABSTRACT_PUBMED_21123872}}
 
==About this Structure==
[[3odq]] is a 4 chain structure of [[Hemoglobin]] with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ODQ OCA].


==See Also==
==See Also==
*[[Hemoglobin]]
*[[Hemoglobin 3D structures|Hemoglobin 3D structures]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:021123872</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: CHTSB, Center for High-Throughput Structural Biology.]]
[[Category: Large Structures]]
[[Category: Cudney, R.]]
[[Category: Cudney R]]
[[Category: Day, J S.]]
[[Category: Day JS]]
[[Category: Larson, S B.]]
[[Category: Larson SB]]
[[Category: Mcpherson, A.]]
[[Category: Mcpherson A]]
[[Category: Nguyen, C.]]
[[Category: Nguyen C]]
[[Category: Center for high-throughput structural biology]]
[[Category: Chtsb]]
[[Category: Heme group]]
[[Category: Oxygen binding]]
[[Category: Oxygen transport]]
[[Category: Protein structure initiative]]
[[Category: Psi-2]]
[[Category: Red blood cell]]
[[Category: Structural genomic]]

Latest revision as of 12:36, 6 September 2023

Structure of a Crystal Form of Human Methemoglobin Indicative of Fiber FormationStructure of a Crystal Form of Human Methemoglobin Indicative of Fiber Formation

Structural highlights

3odq is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.1Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

HBA_HUMAN Defects in HBA1 may be a cause of Heinz body anemias (HEIBAN) [MIM:140700. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.[1] Defects in HBA1 are the cause of alpha-thalassemia (A-THAL) [MIM:604131. The thalassemias are the most common monogenic diseases and occur mostly in Mediterranean and Southeast Asian populations. The hallmark of alpha-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. The level of alpha chain production can range from none to very nearly normal levels. Deletion of both copies of each of the two alpha-globin genes causes alpha(0)-thalassemia, also known as homozygous alpha thalassemia. Due to the complete absence of alpha chains, the predominant fetal hemoglobin is a tetramer of gamma-chains (Bart hemoglobin) that has essentially no oxygen carrying capacity. This causes oxygen starvation in the fetal tissues leading to prenatal lethality or early neonatal death. The loss of three alpha genes results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia known as hemoglobin H disease. Untreated, most patients die in childhood or early adolescence. The loss of two alpha genes results in mild alpha-thalassemia, also known as heterozygous alpha-thalassemia. Affected individuals have small red cells and a mild anemia (microcytosis). If three of the four alpha-globin genes are functional, individuals are completely asymptomatic. Some rare forms of alpha-thalassemia are due to point mutations (non-deletional alpha-thalassemia). The thalassemic phenotype is due to unstable globin alpha chains that are rapidly catabolized prior to formation of the alpha-beta heterotetramers. Note=Alpha(0)-thalassemia is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders. Defects in HBA1 are the cause of hemoglobin H disease (HBH) [MIM:613978. HBH is a form of alpha-thalassemia due to the loss of three alpha genes. This results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia. Untreated, most patients die in childhood or early adolescence.[2]

Function

HBA_HUMAN Involved in oxygen transport from the lung to the various peripheral tissues.

Publication Abstract from PubMed

Human methemoglobin was crystallized in a unique unit cell and its structure was solved by molecular replacement. The hexagonal unit cell has unit-cell parameters a = b = 54.6, c = 677.4 A, with symmetry consistent with space group P622. The unit cell has the second highest aspect ratio of all unit cells contained in the PDB. The 12 molecules in the unit cell describe a right-handed helical filament having no polarity, which is different from the filament composed of HbS fibers, which is the only other well characterized fiber of human hemoglobin. The filaments reported here can be related to canonical sickle-cell hemoglobin filaments and to an alternative sickle-cell filament deduced from fiber diffraction by slight modifications of intermolecular contacts.

Structure of a crystal form of human methemoglobin indicative of fiber formation.,Larson SB, Day JS, Nguyen C, Cudney R, McPherson A Acta Crystallogr D Biol Crystallogr. 2010 Dec;66(Pt 12):1316-22. Epub 2010, Nov 16. PMID:21123872[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ohba Y, Yamamoto K, Hattori Y, Kawata R, Miyaji T. Hyperunstable hemoglobin Toyama [alpha 2 136(H19)Leu----Arg beta 2]: detection and identification by in vitro biosynthesis with radioactive amino acids. Hemoglobin. 1987;11(6):539-56. PMID:2833478
  2. Traeger-Synodinos J, Harteveld CL, Kanavakis E, Giordano PC, Kattamis C, Bernini LF. Hb Aghia Sophia [alpha62(E11)Val-->0 (alpha1)], an "in-frame" deletion causing alpha-thalassemia. Hemoglobin. 1999 Nov;23(4):317-24. PMID:10569720
  3. Larson SB, Day JS, Nguyen C, Cudney R, McPherson A. Structure of a crystal form of human methemoglobin indicative of fiber formation. Acta Crystallogr D Biol Crystallogr. 2010 Dec;66(Pt 12):1316-22. Epub 2010, Nov 16. PMID:21123872 doi:10.1107/S0907444910040370

3odq, resolution 3.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA