4agd: Difference between revisions

No edit summary
No edit summary
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 4agd is ON HOLD  until Paper Publication
==CRYSTAL STRUCTURE OF VEGFR2 (JUXTAMEMBRANE AND KINASE DOMAINS) IN COMPLEX WITH SUNITINIB (SU11248) (N-2-diethylaminoethyl)-5-((Z)-(5- fluoro-2-oxo-1H-indol-3-ylidene)methyl)-2,4-dimethyl-1H-pyrrole-3- carboxamide)==
<StructureSection load='4agd' size='340' side='right'caption='[[4agd]], [[Resolution|resolution]] 2.81&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[4agd]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AGD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4AGD FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.81&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=B49:N-[2-(DIETHYLAMINO)ETHYL]-5-[(Z)-(5-FLUORO-2-OXO-1,2-DIHYDRO-3H-INDOL-3-YLIDENE)METHYL]-2,4-DIMETHYL-1H-PYRROLE-3-CARBOXAMIDE'>B49</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4agd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4agd OCA], [https://pdbe.org/4agd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4agd RCSB], [https://www.ebi.ac.uk/pdbsum/4agd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4agd ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/VGFR2_HUMAN VGFR2_HUMAN] Defects in KDR are associated with susceptibility to hemangioma capillary infantile (HCI) [MIM:[https://omim.org/entry/602089 602089]. HCI are benign, highly proliferative lesions involving aberrant localized growth of capillary endothelium. They are the most common tumor of infancy, occurring in up to 10% of all births. Hemangiomas tend to appear shortly after birth and show rapid neonatal growth for up to 12 months characterized by endothelial hypercellularity and increased numbers of mast cells. This phase is followed by slow involution at a rate of about 10% per year and replacement by fibrofatty stroma.<ref>PMID:11807987</ref> <ref>PMID:18931684</ref>  Note=Plays a major role in tumor angiogenesis. In case of HIV-1 infection, the interaction with extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions.
== Function ==
[https://www.uniprot.org/uniprot/VGFR2_HUMAN VGFR2_HUMAN] Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFC and VEGFD. Plays an essential role in the regulation of angiogenesis, vascular development, vascular permeability, and embryonic hematopoiesis. Promotes proliferation, survival, migration and differentiation of endothelial cells. Promotes reorganization of the actin cytoskeleton. Isoforms lacking a transmembrane domain, such as isoform 2 and isoform 3, may function as decoy receptors for VEGFA, VEGFC and/or VEGFD. Isoform 2 plays an important role as negative regulator of VEGFA- and VEGFC-mediated lymphangiogenesis by limiting the amount of free VEGFA and/or VEGFC and preventing their binding to FLT4. Modulates FLT1 and FLT4 signaling by forming heterodimers. Binding of vascular growth factors to isoform 1 leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, reorganization of the actin cytoskeleton and activation of PTK2/FAK1. Required for VEGFA-mediated induction of NOS2 and NOS3, leading to the production of the signaling molecule nitric oxide (NO) by endothelial cells. Phosphorylates PLCG1. Promotes phosphorylation of FYN, NCK1, NOS3, PIK3R1, PTK2/FAK1 and SRC.<ref>PMID:19668192</ref> <ref>PMID:1417831</ref> <ref>PMID:7929439</ref> <ref>PMID:9160888</ref> <ref>PMID:9837777</ref> <ref>PMID:9804796</ref> <ref>PMID:10600473</ref> <ref>PMID:10102632</ref> <ref>PMID:11387210</ref> <ref>PMID:12649282</ref> <ref>PMID:15026417</ref> <ref>PMID:15215251</ref> <ref>PMID:15962004</ref> <ref>PMID:16966330</ref> <ref>PMID:17303569</ref> <ref>PMID:19834490</ref> <ref>PMID:20179233</ref> <ref>PMID:20224550</ref> <ref>PMID:20705758</ref> <ref>PMID:10368301</ref> <ref>PMID:18529047</ref> <ref>PMID:20080685</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Analyses of compounds in clinical development have shown that ligand efficient-molecules with privileged physical properties and low dose are less likely to fail in the various stages of clinical testing, have fewer postapproval withdrawals, and are less likely to receive black box safety warnings. However, detailed side-by-side examination of molecular interactions and properties within single drug classes are lacking. As a class, VEGF receptor tyrosine kinase inhibitors (VEGFR TKIs) have changed the landscape of how cancer is treated, particularly in clear cell renal cell carcinoma, which is molecularly linked to the VEGF signaling axis. Despite the clear role of the molecular target, member molecules of this validated drug class exhibit distinct clinical efficacy and safety profiles in comparable renal cell carcinoma clinical studies. The first head-to-head randomized phase III comparative study between active VEGFR TKIs has confirmed significant differences in clinical performance [Rini BI, et al. (2011) Lancet 378:193-1939]. To elucidate how fundamental drug potency-efficiency is achieved and impacts differentiation within the VEGFR TKI class, we determined potencies, time dependence, selectivities, and X-ray structures of the drug-kinase complexes using a VEGFR2 TK construct inclusive of the important juxtamembrane domain. Collectively, the studies elucidate unique drug-kinase interactions that are dependent on distinct juxtamembrane domain conformations, resulting in significant potency and ligand efficiency differences. The identified structural trends are consistent with in vitro measurements, which translate well to clinical performance, underscoring a principle that may be broadly applicable to prospective drug design for optimal in vivo performance.


Authors: McTigue, M., Deng, Y., Ryan, K., Brooun, A., Diehl, W., Stewart, A.
Feature Article: Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors.,McTigue M, Murray BW, Chen JH, Deng YL, Solowiej J, Kania RS Proc Natl Acad Sci U S A. 2012 Sep 17. PMID:22988103<ref>PMID:22988103</ref>


Description: CRYSTAL STRUCTURE OF VEGFR2 (JUXTAMEMBRANE AND KINASE DOMAINS) IN COMPLEX WITH SUNITINIB (SU11248) (N-2-diethylaminoethyl)-5-((Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide)
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4agd" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[3D structures of vascular endothelial growth factor receptor|3D structures of vascular endothelial growth factor receptor]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Brooun A]]
[[Category: Deng Y]]
[[Category: Diehl W]]
[[Category: McTigue M]]
[[Category: Ryan K]]
[[Category: Stewart A]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA