1a37: Difference between revisions
m Protected "1a37" [edit=sysop:move=sysop] |
No edit summary |
||
(12 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==14-3-3 PROTEIN ZETA BOUND TO PS-RAF259 PEPTIDE== | ||
<StructureSection load='1a37' size='340' side='right'caption='[[1a37]], [[Resolution|resolution]] 3.60Å' scene=''> | |||
You may | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1a37]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A37 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1A37 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.6Å</td></tr> | |||
-- | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1a37 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1a37 OCA], [https://pdbe.org/1a37 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1a37 RCSB], [https://www.ebi.ac.uk/pdbsum/1a37 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1a37 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/1433Z_BOVIN 1433Z_BOVIN] Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Activates the ADP-ribosyltransferase (exoS) activity of bacterial origin.<ref>PMID:7931346</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a3/1a37_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1a37 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
14-3-3 proteins bind a variety of molecules involved in signal transduction, cell cycle regulation and apoptosis. 14-3-3 binds ligands such as Raf-1 kinase and Bad by recognizing the phosphorylated consensus motif, RSXpSXP, but must bind unphosphorylated ligands, such as glycoprotein Ib and Pseudomonas aeruginosa exoenzyme S, via a different motif. Here we report the crystal structures of the zeta isoform of 14-3-3 in complex with two peptide ligands: a Raf-derived phosphopeptide (pS-Raf-259, LSQRQRSTpSTPNVHMV) and an unphosphorylated peptide derived from phage display (R18, PHCVPRDLSWLDLEANMCLP) that inhibits binding of exoenzyme S and Raf-1. The two peptides bind within a conserved amphipathic groove on the surface of 14-3-3 at overlapping but distinct sites. The phosphoserine of pS-Raf-259 engages a cluster of basic residues (Lys49, Arg56, Arg60, and Arg127), whereas R18 binds via the amphipathic sequence, WLDLE, with its two acidic groups coordinating the same basic cluster. 14-3-3 is dimeric, and its two peptide-binding grooves are arranged in an antiparallel fashion, 30 A apart. The ability of each groove to bind different peptide motifs suggests how 14-3-3 can act in signal transduction by inducing either homodimer or heterodimer formation in its target proteins. | |||
14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove.,Petosa C, Masters SC, Bankston LA, Pohl J, Wang B, Fu H, Liddington RC J Biol Chem. 1998 Jun 26;273(26):16305-10. PMID:9632691<ref>PMID:9632691</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1a37" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[14-3-3 protein 3D structures|14-3-3 protein 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
[[ | |||
== | |||
< | |||
[[Category: Bos taurus]] | [[Category: Bos taurus]] | ||
[[Category: Fu | [[Category: Large Structures]] | ||
[[Category: Liddington | [[Category: Fu H]] | ||
[[Category: Masters | [[Category: Liddington RC]] | ||
[[Category: Petosa | [[Category: Masters SC]] | ||
[[Category: Pohl | [[Category: Petosa C]] | ||
[[Category: Wang | [[Category: Pohl J]] | ||
[[Category: Wang B]] |
Latest revision as of 10:14, 23 October 2024
14-3-3 PROTEIN ZETA BOUND TO PS-RAF259 PEPTIDE14-3-3 PROTEIN ZETA BOUND TO PS-RAF259 PEPTIDE
Structural highlights
Function1433Z_BOVIN Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Activates the ADP-ribosyltransferase (exoS) activity of bacterial origin.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMed14-3-3 proteins bind a variety of molecules involved in signal transduction, cell cycle regulation and apoptosis. 14-3-3 binds ligands such as Raf-1 kinase and Bad by recognizing the phosphorylated consensus motif, RSXpSXP, but must bind unphosphorylated ligands, such as glycoprotein Ib and Pseudomonas aeruginosa exoenzyme S, via a different motif. Here we report the crystal structures of the zeta isoform of 14-3-3 in complex with two peptide ligands: a Raf-derived phosphopeptide (pS-Raf-259, LSQRQRSTpSTPNVHMV) and an unphosphorylated peptide derived from phage display (R18, PHCVPRDLSWLDLEANMCLP) that inhibits binding of exoenzyme S and Raf-1. The two peptides bind within a conserved amphipathic groove on the surface of 14-3-3 at overlapping but distinct sites. The phosphoserine of pS-Raf-259 engages a cluster of basic residues (Lys49, Arg56, Arg60, and Arg127), whereas R18 binds via the amphipathic sequence, WLDLE, with its two acidic groups coordinating the same basic cluster. 14-3-3 is dimeric, and its two peptide-binding grooves are arranged in an antiparallel fashion, 30 A apart. The ability of each groove to bind different peptide motifs suggests how 14-3-3 can act in signal transduction by inducing either homodimer or heterodimer formation in its target proteins. 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove.,Petosa C, Masters SC, Bankston LA, Pohl J, Wang B, Fu H, Liddington RC J Biol Chem. 1998 Jun 26;273(26):16305-10. PMID:9632691[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|