2q4t: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2q4t.png|left|200px]]


<!--
==Ensemble refinement of the protein crystal structure of a cytosolic 5'-nucleotidase III from Mus musculus Mm.158936==
The line below this paragraph, containing "STRUCTURE_2q4t", creates the "Structure Box" on the page.
<StructureSection load='2q4t' size='340' side='right'caption='[[2q4t]], [[Resolution|resolution]] 2.35&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[2q4t]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2Q4T OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2Q4T FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.35&#8491;, 4 models</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EPE:4-(2-HYDROXYETHYL)-1-PIPERAZINE+ETHANESULFONIC+ACID'>EPE</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr>
{{STRUCTURE_2q4t|  PDB=2q4t  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2q4t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2q4t OCA], [https://pdbe.org/2q4t PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2q4t RCSB], [https://www.ebi.ac.uk/pdbsum/2q4t PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2q4t ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/5NT3A_MOUSE 5NT3A_MOUSE] Nucleotidase which shows specific activity towards cytidine monophosphate (CMP) and 7-methylguanosine monophosphate (m(7)GMP). CMP seems to be the preferred substrate.[UniProtKB:Q9H0P0]
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/q4/2q4t_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2q4t ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
X-ray crystallography typically uses a single set of coordinates and B factors to describe macromolecular conformations. Refinement of multiple copies of the entire structure has been previously used in specific cases as an alternative means of representing structural flexibility. Here, we systematically validate this method by using simulated diffraction data, and we find that ensemble refinement produces better representations of the distributions of atomic positions in the simulated structures than single-conformer refinements. Comparison of principal components calculated from the refined ensembles and simulations shows that concerted motions are captured locally, but that correlations dissipate over long distances. Ensemble refinement is also used on 50 experimental structures of varying resolution and leads to decreases in R(free) values, implying that improvements in the representation of flexibility observed for the simulated structures may apply to real structures. These gains are essentially independent of resolution or data-to-parameter ratio, suggesting that even structures at moderate resolution can benefit from ensemble refinement.


===Ensemble refinement of the protein crystal structure of a cytosolic 5'-nucleotidase III from Mus musculus Mm.158936===
Ensemble refinement of protein crystal structures: validation and application.,Levin EJ, Kondrashov DA, Wesenberg GE, Phillips GN Jr Structure. 2007 Sep;15(9):1040-52. PMID:17850744<ref>PMID:17850744</ref>


 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
<!--
</div>
The line below this paragraph, {{ABSTRACT_PUBMED_17850744}}, adds the Publication Abstract to the page
<div class="pdbe-citations 2q4t" style="background-color:#fffaf0;"></div>
(as it appears on PubMed at http://www.pubmed.gov), where 17850744 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_17850744}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Large Structures]]
[[2q4t]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2Q4T OCA].
 
==Reference==
<ref group="xtra">PMID:017850744</ref><ref group="xtra">PMID:016672222</ref><references group="xtra"/>
[[Category: 5'-nucleotidase]]
[[Category: Mus musculus]]
[[Category: Mus musculus]]
[[Category: CESG, Center for Eukaryotic Structural Genomics.]]
[[Category: Kondrashov DA]]
[[Category: Kondrashov, D A.]]
[[Category: Levin EJ]]
[[Category: Levin, E J.]]
[[Category: Phillips Jr GN]]
[[Category: Phillips, G N.]]
[[Category: Wesenberg GE]]
[[Category: Wesenberg, G E.]]
[[Category: Aah38029]]
[[Category: Bc038029]]
[[Category: Center for eukaryotic structural genomic]]
[[Category: Cesg]]
[[Category: Cytosolic 5'-nucleotidase iii]]
[[Category: Ensemble refinement]]
[[Category: Hydrolase]]
[[Category: Mm 158936]]
[[Category: Nt5c3 protein]]
[[Category: Protein structure initiative]]
[[Category: Psi]]
[[Category: Refinement methodology development]]
[[Category: Structural genomic]]
[[Category: Umph-1]]

Latest revision as of 12:26, 6 November 2024

Ensemble refinement of the protein crystal structure of a cytosolic 5'-nucleotidase III from Mus musculus Mm.158936Ensemble refinement of the protein crystal structure of a cytosolic 5'-nucleotidase III from Mus musculus Mm.158936

Structural highlights

2q4t is a 2 chain structure with sequence from Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.35Å, 4 models
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

5NT3A_MOUSE Nucleotidase which shows specific activity towards cytidine monophosphate (CMP) and 7-methylguanosine monophosphate (m(7)GMP). CMP seems to be the preferred substrate.[UniProtKB:Q9H0P0]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

X-ray crystallography typically uses a single set of coordinates and B factors to describe macromolecular conformations. Refinement of multiple copies of the entire structure has been previously used in specific cases as an alternative means of representing structural flexibility. Here, we systematically validate this method by using simulated diffraction data, and we find that ensemble refinement produces better representations of the distributions of atomic positions in the simulated structures than single-conformer refinements. Comparison of principal components calculated from the refined ensembles and simulations shows that concerted motions are captured locally, but that correlations dissipate over long distances. Ensemble refinement is also used on 50 experimental structures of varying resolution and leads to decreases in R(free) values, implying that improvements in the representation of flexibility observed for the simulated structures may apply to real structures. These gains are essentially independent of resolution or data-to-parameter ratio, suggesting that even structures at moderate resolution can benefit from ensemble refinement.

Ensemble refinement of protein crystal structures: validation and application.,Levin EJ, Kondrashov DA, Wesenberg GE, Phillips GN Jr Structure. 2007 Sep;15(9):1040-52. PMID:17850744[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Levin EJ, Kondrashov DA, Wesenberg GE, Phillips GN Jr. Ensemble refinement of protein crystal structures: validation and application. Structure. 2007 Sep;15(9):1040-52. PMID:17850744 doi:http://dx.doi.org/10.1016/j.str.2007.06.019

2q4t, resolution 2.35Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA