2ylp: Difference between revisions
m Protected "2ylp" [edit=sysop:move=sysop] |
No edit summary |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The entry | ==TARGETING THE BINDING FUNCTION 3 SITE OF THE ANDROGEN RECEPTOR THROUGH IN SILICO MOLECULAR MODELING== | ||
<StructureSection load='2ylp' size='340' side='right'caption='[[2ylp]], [[Resolution|resolution]] 2.30Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2ylp]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2YLP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2YLP FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=056:3-[(2,4-DICHLOROPHENYL)METHYLSULFANYLMETHYL]BENZOIC+ACID'>056</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=TES:TESTOSTERONE'>TES</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2ylp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ylp OCA], [https://pdbe.org/2ylp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2ylp RCSB], [https://www.ebi.ac.uk/pdbsum/2ylp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2ylp ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/ANDR_HUMAN ANDR_HUMAN] Defects in AR are the cause of androgen insensitivity syndrome (AIS) [MIM:[https://omim.org/entry/300068 300068]; previously known as testicular feminization syndrome (TFM). AIS is an X-linked recessive form of pseudohermaphroditism due end-organ resistance to androgen. Affected males have female external genitalia, female breast development, blind vagina, absent uterus and female adnexa, and abdominal or inguinal testes, despite a normal 46,XY karyotype.<ref>PMID:2594783</ref> <ref>PMID:8413310</ref> <ref>PMID:1775137</ref> <ref>PMID:16129672</ref> <ref>PMID:2082179</ref> <ref>PMID:1999491</ref> <ref>PMID:1609793</ref> <ref>PMID:1426313</ref> <ref>PMID:1487249</ref> <ref>PMID:1307250</ref> <ref>PMID:1569163</ref> <ref>PMID:1464650</ref> <ref>PMID:1430233</ref> <ref>PMID:1316540</ref> <ref>PMID:1480178</ref> <ref>PMID:8224266</ref> <ref>PMID:8103398</ref> <ref>PMID:8281140</ref> <ref>PMID:8325950</ref> <ref>PMID:8096390</ref> <ref>PMID:8446106</ref> [:]<ref>PMID:8162033</ref> <ref>PMID:7981687</ref> <ref>PMID:7981689</ref> <ref>PMID:7962294</ref> <ref>PMID:8040309</ref> <ref>PMID:7929841</ref> <ref>PMID:7993455</ref> <ref>PMID:7970939</ref> <ref>PMID:8830623</ref> <ref>PMID:7641413</ref> <ref>PMID:7671849</ref> <ref>PMID:7633398</ref> <ref>PMID:7537149</ref> <ref>PMID:7581399</ref> <ref>PMID:8723113</ref> <ref>PMID:9039340</ref> <ref>PMID:9001799</ref> <ref>PMID:8626869</ref> <ref>PMID:8768864</ref> <ref>PMID:8918984</ref> <ref>PMID:8683794</ref> <ref>PMID:8647313</ref> <ref>PMID:8809734</ref> <ref>PMID:9106550</ref> <ref>PMID:9160185</ref> <ref>PMID:9007482</ref> <ref>PMID:8990010</ref> <ref>PMID:9255042</ref> <ref>PMID:9252933</ref> <ref>PMID:9328206</ref> <ref>PMID:9302173</ref> <ref>PMID:9544375</ref> <ref>PMID:9698822</ref> <ref>PMID:9788719</ref> <ref>PMID:9610419</ref> <ref>PMID:9856504</ref> <ref>PMID:9554754</ref> [:]<ref>PMID:9851768</ref> <ref>PMID:9627582</ref> <ref>PMID:10571951</ref> <ref>PMID:10221692</ref> <ref>PMID:10404311</ref> <ref>PMID:10022458</ref> <ref>PMID:10221770</ref> <ref>PMID:10590024</ref> <ref>PMID:10458483</ref> <ref>PMID:10690872</ref> <ref>PMID:11587068</ref> <ref>PMID:11744994</ref> <ref>PMID:16595706</ref> Defects in AR are the cause of spinal and bulbar muscular atrophy X-linked type 1 (SMAX1) [MIM:[https://omim.org/entry/313200 313200]; also known as Kennedy disease. SMAX1 is an X-linked recessive form of spinal muscular atrophy. Spinal muscular atrophy refers to a group of neuromuscular disorders characterized by degeneration of the anterior horn cells of the spinal cord, leading to symmetrical muscle weakness and atrophy. SMAX1 occurs only in men. Age at onset is usually in the third to fifth decade of life, but earlier involvement has been reported. It is characterized by slowly progressive limb and bulbar muscle weakness with fasciculations, muscle atrophy, and gynecomastia. The disorder is clinically similar to classic forms of autosomal spinal muscular atrophy. Note=Caused by trinucleotide CAG repeat expansion. In SMAX1 patients the number of Gln ranges from 38 to 62. Longer expansions result in earlier onset and more severe clinical manifestations of the disease.<ref>PMID:15851746</ref> Note=Defects in AR may play a role in metastatic prostate cancer. The mutated receptor stimulates prostate growth and metastases development despite of androgen ablation. This treatment can reduce primary and metastatic lesions probably by inducing apoptosis of tumor cells when they express the wild-type receptor. Defects in AR are the cause of androgen insensitivity syndrome partial (PAIS) [MIM:[https://omim.org/entry/312300 312300]; also known as Reifenstein syndrome. PAIS is characterized by hypospadias, hypogonadism, gynecomastia, genital ambiguity, normal XY karyotype, and a pedigree pattern consistent with X-linked recessive inheritance. Some patients present azoospermia or severe oligospermia without other clinical manifestations. | |||
== Function == | |||
[https://www.uniprot.org/uniprot/ANDR_HUMAN ANDR_HUMAN] Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Transcription factor activity is modulated by bound coactivator and corepressor proteins. Transcription activation is down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3.<ref>PMID:14664718</ref> <ref>PMID:18084323</ref> <ref>PMID:19345326</ref> <ref>PMID:20980437</ref> <ref>PMID:15563469</ref> <ref>PMID:17591767</ref> <ref>PMID:17911242</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The androgen receptor (AR) is the best studied drug target for the treatment of prostate cancer. While there are a number of drugs that target the AR, they all work through the same mechanism of action and are prone to the development of drug resistance. There is a large unmet need for novel AR inhibitors which work through alternative mechanism(s). Recent studies have identified a novel site on the AR called binding function 3 (BF3) that is involved into AR transcriptional activity. In order to identify inhibitors that target the BF3 site, we have conducted a large-scale in silico screen followed by experimental evaluation. A number of compounds were identified that effectively inhibited the AR transcriptional activity with no obvious cytotoxicity. The mechanism of action of these compounds was validated by biochemical assays and X-ray crystallography. These findings lay a foundation for the development of alternative or supplementary therapies capable of combating prostate cancer even in its antiandrogen resistant forms. | |||
Targeting the Binding Function 3 (BF3) Site of the Human Androgen Receptor through Virtual Screening.,Lack NA, Axerio-Cilies P, Tavassoli P, Han FQ, Chan KH, Feau C, Leblanc E, Guns ET, Guy RK, Rennie PS, Cherkasov A J Med Chem. 2011 Nov 18. PMID:22047606<ref>PMID:22047606</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2ylp" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Androgen receptor 3D structures|Androgen receptor 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Axerio P]] | |||
[[Category: Chan KH]] | |||
[[Category: Cherkasov A]] | |||
[[Category: Feau C]] | |||
[[Category: Guy RK]] | |||
[[Category: Han FQ]] | |||
[[Category: Kuchenbecker K]] | |||
[[Category: Lack NA]] | |||
[[Category: LeBlanc E]] | |||
[[Category: Rennie PS]] | |||
[[Category: Tavassoli P]] | |||
[[Category: Tomlinson E]] |
Latest revision as of 13:54, 20 December 2023
TARGETING THE BINDING FUNCTION 3 SITE OF THE ANDROGEN RECEPTOR THROUGH IN SILICO MOLECULAR MODELINGTARGETING THE BINDING FUNCTION 3 SITE OF THE ANDROGEN RECEPTOR THROUGH IN SILICO MOLECULAR MODELING
Structural highlights
DiseaseANDR_HUMAN Defects in AR are the cause of androgen insensitivity syndrome (AIS) [MIM:300068; previously known as testicular feminization syndrome (TFM). AIS is an X-linked recessive form of pseudohermaphroditism due end-organ resistance to androgen. Affected males have female external genitalia, female breast development, blind vagina, absent uterus and female adnexa, and abdominal or inguinal testes, despite a normal 46,XY karyotype.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [:][22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [:][59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] Defects in AR are the cause of spinal and bulbar muscular atrophy X-linked type 1 (SMAX1) [MIM:313200; also known as Kennedy disease. SMAX1 is an X-linked recessive form of spinal muscular atrophy. Spinal muscular atrophy refers to a group of neuromuscular disorders characterized by degeneration of the anterior horn cells of the spinal cord, leading to symmetrical muscle weakness and atrophy. SMAX1 occurs only in men. Age at onset is usually in the third to fifth decade of life, but earlier involvement has been reported. It is characterized by slowly progressive limb and bulbar muscle weakness with fasciculations, muscle atrophy, and gynecomastia. The disorder is clinically similar to classic forms of autosomal spinal muscular atrophy. Note=Caused by trinucleotide CAG repeat expansion. In SMAX1 patients the number of Gln ranges from 38 to 62. Longer expansions result in earlier onset and more severe clinical manifestations of the disease.[72] Note=Defects in AR may play a role in metastatic prostate cancer. The mutated receptor stimulates prostate growth and metastases development despite of androgen ablation. This treatment can reduce primary and metastatic lesions probably by inducing apoptosis of tumor cells when they express the wild-type receptor. Defects in AR are the cause of androgen insensitivity syndrome partial (PAIS) [MIM:312300; also known as Reifenstein syndrome. PAIS is characterized by hypospadias, hypogonadism, gynecomastia, genital ambiguity, normal XY karyotype, and a pedigree pattern consistent with X-linked recessive inheritance. Some patients present azoospermia or severe oligospermia without other clinical manifestations. FunctionANDR_HUMAN Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Transcription factor activity is modulated by bound coactivator and corepressor proteins. Transcription activation is down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3.[73] [74] [75] [76] [77] [78] [79] Publication Abstract from PubMedThe androgen receptor (AR) is the best studied drug target for the treatment of prostate cancer. While there are a number of drugs that target the AR, they all work through the same mechanism of action and are prone to the development of drug resistance. There is a large unmet need for novel AR inhibitors which work through alternative mechanism(s). Recent studies have identified a novel site on the AR called binding function 3 (BF3) that is involved into AR transcriptional activity. In order to identify inhibitors that target the BF3 site, we have conducted a large-scale in silico screen followed by experimental evaluation. A number of compounds were identified that effectively inhibited the AR transcriptional activity with no obvious cytotoxicity. The mechanism of action of these compounds was validated by biochemical assays and X-ray crystallography. These findings lay a foundation for the development of alternative or supplementary therapies capable of combating prostate cancer even in its antiandrogen resistant forms. Targeting the Binding Function 3 (BF3) Site of the Human Androgen Receptor through Virtual Screening.,Lack NA, Axerio-Cilies P, Tavassoli P, Han FQ, Chan KH, Feau C, Leblanc E, Guns ET, Guy RK, Rennie PS, Cherkasov A J Med Chem. 2011 Nov 18. PMID:22047606[80] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|