3oii: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:3oii.png|left|200px]]


<!--
==Crystal structure of Saccharomyces Cerevisiae Nep1/Emg1 bound to S-adenosylhomocysteine==
The line below this paragraph, containing "STRUCTURE_3oii", creates the "Structure Box" on the page.
<StructureSection load='3oii' size='340' side='right'caption='[[3oii]], [[Resolution|resolution]] 1.85&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[3oii]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3OII OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3OII FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.85&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SAH:S-ADENOSYL-L-HOMOCYSTEINE'>SAH</scene></td></tr>
{{STRUCTURE_3oii|  PDB=3oii  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3oii FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3oii OCA], [https://pdbe.org/3oii PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3oii RCSB], [https://www.ebi.ac.uk/pdbsum/3oii PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3oii ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/NEP1_YEAST NEP1_YEAST] S-adenosyl-L-methionine-dependent pseudouridine N(1)-methyltransferase that methylates pseudouridine at position 1189 (Psi1189) in 18S rRNA. Involved the biosynthesis of the hypermodified N1-methyl-N3-(3-amino-3-carboxypropyl) pseudouridine (m1acp3-Psi) conserved in eukaryotic 18S rRNA. N1-methylation is independent on acp-modification at the N3-position of U1191. Has also an essential role in 40S ribosomal subunit biogenesis independent on its methyltransferase activity, facilitating the incorporation of ribosomal protein S19 (RPS19A/RPS19B) during the formation of pre-ribosomes.<ref>PMID:11694595</ref> <ref>PMID:11935223</ref> <ref>PMID:15590835</ref> <ref>PMID:20972225</ref> <ref>PMID:21087996</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Nucleolar Essential Protein 1 (Nep1) is required for small subunit (SSU) ribosomal RNA (rRNA) maturation and is mutated in Bowen-Conradi Syndrome. Although yeast (Saccharomyces cerevisiae) Nep1 interacts with a consensus sequence found in three regions of SSU rRNA, the molecular details of the interaction are unknown. Nep1 is a SPOUT RNA methyltransferase, and can catalyze methylation at the N1 of pseudouridine. Nep1 is also involved in assembly of Rps19, an SSU ribosomal protein. Mutations in Nep1 that result in decreased methyl donor binding do not result in lethality, suggesting that enzymatic activity may not be required for function, and RNA binding may play a more important role. To study these interactions, the crystal structures of the scNep1 dimer and its complexes with RNA were determined. The results demonstrate that Nep1 recognizes its RNA site via base-specific interactions and stabilizes a stem-loop in the bound RNA. Furthermore, the RNA structure observed contradicts the predicted structures of the Nep1-binding sites within mature rRNA, suggesting that the Nep1 changes rRNA structure upon binding. Finally, a uridine base is bound in the active site of Nep1, positioned for a methyltransfer at the C5 position, supporting its role as an N1-specific pseudouridine methyltransferase.


===Crystal structure of Saccharomyces Cerevisiae Nep1/Emg1 bound to S-adenosylhomocysteine===
Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis.,Thomas SR, Keller CA, Szyk A, Cannon JR, Laronde-Leblanc NA Nucleic Acids Res. 2010 Nov 17. PMID:21087996<ref>PMID:21087996</ref>


 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
<!--
</div>
The line below this paragraph, {{ABSTRACT_PUBMED_21087996}}, adds the Publication Abstract to the page
<div class="pdbe-citations 3oii" style="background-color:#fffaf0;"></div>
(as it appears on PubMed at http://www.pubmed.gov), where 21087996 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_21087996}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Large Structures]]
[[3oii]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3OII OCA].
 
==Reference==
<ref group="xtra">PMID:21087996</ref><references group="xtra"/>
[[Category: Saccharomyces cerevisiae]]
[[Category: Saccharomyces cerevisiae]]
[[Category: LaRonde-LeBlanc, N.]]
[[Category: LaRonde-LeBlanc N]]
[[Category: Szyk, A]]
[[Category: Szyk A]]
[[Category: Thomas, S R.]]
[[Category: Thomas SR]]

Latest revision as of 12:39, 6 September 2023

Crystal structure of Saccharomyces Cerevisiae Nep1/Emg1 bound to S-adenosylhomocysteineCrystal structure of Saccharomyces Cerevisiae Nep1/Emg1 bound to S-adenosylhomocysteine

Structural highlights

3oii is a 2 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.85Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

NEP1_YEAST S-adenosyl-L-methionine-dependent pseudouridine N(1)-methyltransferase that methylates pseudouridine at position 1189 (Psi1189) in 18S rRNA. Involved the biosynthesis of the hypermodified N1-methyl-N3-(3-amino-3-carboxypropyl) pseudouridine (m1acp3-Psi) conserved in eukaryotic 18S rRNA. N1-methylation is independent on acp-modification at the N3-position of U1191. Has also an essential role in 40S ribosomal subunit biogenesis independent on its methyltransferase activity, facilitating the incorporation of ribosomal protein S19 (RPS19A/RPS19B) during the formation of pre-ribosomes.[1] [2] [3] [4] [5]

Publication Abstract from PubMed

Nucleolar Essential Protein 1 (Nep1) is required for small subunit (SSU) ribosomal RNA (rRNA) maturation and is mutated in Bowen-Conradi Syndrome. Although yeast (Saccharomyces cerevisiae) Nep1 interacts with a consensus sequence found in three regions of SSU rRNA, the molecular details of the interaction are unknown. Nep1 is a SPOUT RNA methyltransferase, and can catalyze methylation at the N1 of pseudouridine. Nep1 is also involved in assembly of Rps19, an SSU ribosomal protein. Mutations in Nep1 that result in decreased methyl donor binding do not result in lethality, suggesting that enzymatic activity may not be required for function, and RNA binding may play a more important role. To study these interactions, the crystal structures of the scNep1 dimer and its complexes with RNA were determined. The results demonstrate that Nep1 recognizes its RNA site via base-specific interactions and stabilizes a stem-loop in the bound RNA. Furthermore, the RNA structure observed contradicts the predicted structures of the Nep1-binding sites within mature rRNA, suggesting that the Nep1 changes rRNA structure upon binding. Finally, a uridine base is bound in the active site of Nep1, positioned for a methyltransfer at the C5 position, supporting its role as an N1-specific pseudouridine methyltransferase.

Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis.,Thomas SR, Keller CA, Szyk A, Cannon JR, Laronde-Leblanc NA Nucleic Acids Res. 2010 Nov 17. PMID:21087996[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Liu PC, Thiele DJ. Novel stress-responsive genes EMG1 and NOP14 encode conserved, interacting proteins required for 40S ribosome biogenesis. Mol Biol Cell. 2001 Nov;12(11):3644-57. PMID:11694595
  2. Eschrich D, Buchhaupt M, Kotter P, Entian KD. Nep1p (Emg1p), a novel protein conserved in eukaryotes and archaea, is involved in ribosome biogenesis. Curr Genet. 2002 Feb;40(5):326-38. Epub 2002 Feb 6. PMID:11935223 doi:http://dx.doi.org/10.1007/s00294-001-0269-4
  3. Bernstein KA, Gallagher JE, Mitchell BM, Granneman S, Baserga SJ. The small-subunit processome is a ribosome assembly intermediate. Eukaryot Cell. 2004 Dec;3(6):1619-26. PMID:15590835 doi:http://dx.doi.org/10.1128/EC.3.6.1619-1626.2004
  4. Meyer B, Wurm JP, Kotter P, Leisegang MS, Schilling V, Buchhaupt M, Held M, Bahr U, Karas M, Heckel A, Bohnsack MT, Wohnert J, Entian KD. The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Psi1191 in yeast 18S rRNA. Nucleic Acids Res. 2011 Mar;39(4):1526-37. doi: 10.1093/nar/gkq931. Epub 2010 Oct, 23. PMID:20972225 doi:http://dx.doi.org/10.1093/nar/gkq931
  5. Thomas SR, Keller CA, Szyk A, Cannon JR, Laronde-Leblanc NA. Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Nucleic Acids Res. 2010 Nov 17. PMID:21087996 doi:10.1093/nar/gkq1131
  6. Thomas SR, Keller CA, Szyk A, Cannon JR, Laronde-Leblanc NA. Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Nucleic Acids Res. 2010 Nov 17. PMID:21087996 doi:10.1093/nar/gkq1131

3oii, resolution 1.85Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA