C-JUN: Difference between revisions
David Canner (talk | contribs) No edit summary |
Michal Harel (talk | contribs) No edit summary |
||
(15 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
< | <StructureSection load='1jun' size='350' side='right' scene='' caption='Human C-Jun homodimer leucine zipper domain complex with acetyl (PDB code [[1jun]])'> | ||
== Introduction == | == Introduction == | ||
The c-Jun protein is a member of transcription factors which consist of a basic region leucine zipper region <ref name="one"> PMID:8662824 </ref>. Originally identified by its homology to v-jun, the oncogene from the avian sarcomoa virus <ref name="four"> Bossy-Wetzel, E., Bakiri, L., Yaniv, M. (1997). Induction of apoptosis by the transcription factor c-Jun. EMO Journal. Vol.16;7. 1695-1709 </ref>. All these leucine zipper factors bind to DNA in one of two states: homo or heterodimers <ref name="two"> PMID:8662824 </ref>. In conjunction with the c-Fos protein these two proteins bind to specific regions of DNA strands. Together these two proteins form the c-fos/c-jun complex which help regulate cell growth and differentiation <ref name="one" />. The members of the jun and fos families include three Jun proteins and four Fos proteins (c-Jun, JunB, JunD,c-Fos, Fos-B, Fra1, and Fra2) <ref name="one" />. Regulation of the complex iteslf is done by interactions between the protein and DNA in addition to the protein-protein interactions between each of the leucine zipper domains <ref name="one" />. | The '''c-Jun''' protein is a member of transcription factors which consist of a basic region leucine zipper region <ref name="one"> PMID:8662824 </ref>. Originally identified by its homology to v-jun, the oncogene from the avian sarcomoa virus <ref name="four"> Bossy-Wetzel, E., Bakiri, L., Yaniv, M. (1997). Induction of apoptosis by the transcription factor c-Jun. EMO Journal. Vol.16;7. 1695-1709 </ref>. All these leucine zipper factors bind to DNA in one of two states: homo or heterodimers <ref name="two"> PMID:8662824 </ref>. In conjunction with the c-Fos protein these two proteins bind to specific regions of DNA strands. Together these two proteins form the c-fos/c-jun complex which help regulate cell growth and differentiation <ref name="one" />. The members of the jun and fos families include three Jun proteins and four Fos proteins (c-Jun, JunB, JunD,c-Fos, Fos-B, Fra1, and Fra2) <ref name="one" />. Regulation of the complex iteslf is done by interactions between the protein and DNA in addition to the protein-protein interactions between each of the leucine zipper domains <ref name="one" />. See [[Transcription and RNA Processing]]. | ||
== Structure Overview == | == Structure Overview == | ||
The structure of c-Jun is comprised of a leucine zipper as previously stated. This dimerization motif may be in one of two classes, both of which are required for DNA-binding transcription factors; the basic-domain leucine zipper proteins (bZIP) and the basic helix loop-helix-leucine zipper proteins(bHLH-ZIP) <ref name="two"> A Junius, F.K., Mackay, J.P., Bubb, W.A., Jensen, S.A., Weiss, A.S., King, G.F. 2006. Nuclear Magnetic Resonance Characterization of the Jun Leucine Zipper Domain: Unusual Properties of Coiled-Coil Interfacial Polar Residues?</ref>. The strand becomes an elongated coiled coil. This is formed by residues at the a and d positions in each of the two monomers, whereby they create hydrophobic centers which conform to the "knobs into holes" model by Crick. <ref name="two" />. Amino acids at these a and d positions are each surrounded by 4 additional residues from adjacent a-helix monomer <ref name="two" />. | The structure of c-Jun is comprised of a leucine zipper as previously stated. This dimerization motif may be in one of two classes, both of which are required for DNA-binding transcription factors; the basic-domain leucine zipper proteins (bZIP) and the basic helix loop-helix-leucine zipper proteins(bHLH-ZIP) <ref name="two"> A Junius, F.K., Mackay, J.P., Bubb, W.A., Jensen, S.A., Weiss, A.S., King, G.F. 2006. Nuclear Magnetic Resonance Characterization of the Jun Leucine Zipper Domain: Unusual Properties of Coiled-Coil Interfacial Polar Residues?</ref>. The strand becomes an elongated coiled coil. This is formed by residues at the a and d positions in each of the two monomers, whereby they create hydrophobic centers which conform to the "knobs into holes" model by Crick. <ref name="two" />. Amino acids at these a and d positions are each surrounded by 4 additional residues from adjacent a-helix monomer <ref name="two" />. | ||
Line 27: | Line 26: | ||
It was found that the N-terminus contains both calcium and stress-regulated transcriptional activation domains <ref name="five" />. According to the study,distinct mechanisms of c-Jun control function by calcium and stress signals <ref name="five" />. | It was found that the N-terminus contains both calcium and stress-regulated transcriptional activation domains <ref name="five" />. According to the study,distinct mechanisms of c-Jun control function by calcium and stress signals <ref name="five" />. | ||
==Additional Resources== | |||
To See Additional information, see: [[Transcription and RNA Processing]] <br /> | |||
</StructureSection> | |||
==3D structure of C-JUN== | |||
Updated on {{REVISIONDAY2}}-{{MONTHNAME|{{REVISIONMONTH}}}}-{{REVISIONYEAR}} | |||
[[1jun]] – hCJUN leucine zipper domain – human – NMR<br /> | |||
[[1jnm]] - hCJUN leucine zipper domain + DNA<br /> | |||
[[1fos]] – hCJUN + p55 c-Fos + DNA<br /> | |||
[[5fv8]] – hCJUN + FOSW<br /> | |||
== References == | == References == | ||
<references/> | <references/> | ||
[[Category:Topic Page]] |