3nc1: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of the CRM1-RanGTP complex== | |||
<StructureSection load='3nc1' size='340' side='right'caption='[[3nc1]], [[Resolution|resolution]] 3.35Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3nc1]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3NC1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3NC1 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.35Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GTP:GUANOSINE-5-TRIPHOSPHATE'>GTP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3nc1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3nc1 OCA], [https://pdbe.org/3nc1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3nc1 RCSB], [https://www.ebi.ac.uk/pdbsum/3nc1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3nc1 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/RAN_HUMAN RAN_HUMAN] GTP-binding protein involved in nucleocytoplasmic transport. Required for the import of protein into the nucleus and also for RNA export. Involved in chromatin condensation and control of cell cycle (By similarity). The complex with BIRC5/ survivin plays a role in mitotic spindle formation by serving as a physical scaffold to help deliver the RAN effector molecule TPX2 to microtubules. Acts as a negative regulator of the kinase activity of VRK1 and VRK2.<ref>PMID:10400640</ref> <ref>PMID:8692944</ref> <ref>PMID:18591255</ref> <ref>PMID:18617507</ref> Enhances AR-mediated transactivation. Transactivation decreases as the poly-Gln length within AR increases.<ref>PMID:10400640</ref> <ref>PMID:8692944</ref> <ref>PMID:18591255</ref> <ref>PMID:18617507</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Classic nuclear export signals (NESs) confer CRM1-dependent nuclear export. Here we present crystal structures of the RanGTP-CRM1 complex alone and bound to the prototypic PKI or HIV-1 Rev NESs. These NESs differ markedly in the spacing of their key hydrophobic (Phi) residues, yet CRM1 recognizes them with the same rigid set of five Phi pockets. The different Phi spacings are compensated for by different conformations of the bound NESs: in the case of PKI, an alpha-helical conformation, and in the case of Rev, an extended conformation with a critical proline docking into a Phi pocket. NMR analyses of CRM1-bound and CRM1-free PKI NES suggest that CRM1 selects NES conformers that pre-exist in solution. Our data lead to a new structure-based NES consensus, and explain why NESs differ in their affinities for CRM1 and why supraphysiological NESs bind the exportin so tightly. | |||
NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1.,Guttler T, Madl T, Neumann P, Deichsel D, Corsini L, Monecke T, Ficner R, Sattler M, Gorlich D Nat Struct Mol Biol. 2010 Oct 24. PMID:20972448<ref>PMID:20972448</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 3nc1" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Exportin 3D structures|Exportin 3D structures]] | |||
*[[GTP-binding protein 3D structures|GTP-binding protein 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Mus musculus]] | |||
[[Category: Corsini L]] | |||
[[Category: Deichsel D]] | |||
[[Category: Ficner R]] | |||
[[Category: Gorlich D]] | |||
[[Category: Guttler T]] | |||
[[Category: Madl T]] | |||
[[Category: Monecke T]] | |||
[[Category: Neumann P]] | |||
[[Category: Sattler M]] |
Latest revision as of 10:57, 12 July 2023
Crystal structure of the CRM1-RanGTP complexCrystal structure of the CRM1-RanGTP complex
Structural highlights
FunctionRAN_HUMAN GTP-binding protein involved in nucleocytoplasmic transport. Required for the import of protein into the nucleus and also for RNA export. Involved in chromatin condensation and control of cell cycle (By similarity). The complex with BIRC5/ survivin plays a role in mitotic spindle formation by serving as a physical scaffold to help deliver the RAN effector molecule TPX2 to microtubules. Acts as a negative regulator of the kinase activity of VRK1 and VRK2.[1] [2] [3] [4] Enhances AR-mediated transactivation. Transactivation decreases as the poly-Gln length within AR increases.[5] [6] [7] [8] Publication Abstract from PubMedClassic nuclear export signals (NESs) confer CRM1-dependent nuclear export. Here we present crystal structures of the RanGTP-CRM1 complex alone and bound to the prototypic PKI or HIV-1 Rev NESs. These NESs differ markedly in the spacing of their key hydrophobic (Phi) residues, yet CRM1 recognizes them with the same rigid set of five Phi pockets. The different Phi spacings are compensated for by different conformations of the bound NESs: in the case of PKI, an alpha-helical conformation, and in the case of Rev, an extended conformation with a critical proline docking into a Phi pocket. NMR analyses of CRM1-bound and CRM1-free PKI NES suggest that CRM1 selects NES conformers that pre-exist in solution. Our data lead to a new structure-based NES consensus, and explain why NESs differ in their affinities for CRM1 and why supraphysiological NESs bind the exportin so tightly. NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1.,Guttler T, Madl T, Neumann P, Deichsel D, Corsini L, Monecke T, Ficner R, Sattler M, Gorlich D Nat Struct Mol Biol. 2010 Oct 24. PMID:20972448[9] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|