1cuc: Difference between revisions
No edit summary |
No edit summary |
||
(19 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==CUTINASE, N172K, R196D MUTANT, ORTHORHOMBIC CRYSTAL FORM== | ||
In characterizing mutants and covalently inhibited complexes of Fusarium | <StructureSection load='1cuc' size='340' side='right'caption='[[1cuc]], [[Resolution|resolution]] 1.75Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1cuc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Fusarium_vanettenii Fusarium vanettenii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CUC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1CUC FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.75Å</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1cuc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1cuc OCA], [https://pdbe.org/1cuc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1cuc RCSB], [https://www.ebi.ac.uk/pdbsum/1cuc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1cuc ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/CUTI1_FUSVN CUTI1_FUSVN] Catalyzes the hydrolysis of complex carboxylic polyesters found in the cell wall of plants (PubMed:18658138, PubMed:19810726, PubMed:8286366, PubMed:8555209). Degrades cutin, a macromolecule that forms the structure of the plant cuticle (PubMed:18658138, PubMed:19810726, PubMed:8286366, PubMed:8555209). Allows pathogenic fungi to penetrate through the cuticular barrier into the host plant during the initial stage of fungal infection (Ref.4).<ref>PMID:18658138</ref> <ref>PMID:19810726</ref> <ref>PMID:8286366</ref> <ref>PMID:8555209</ref> [PROSITE-ProRule:PRU10109] | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cu/1cuc_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1cuc ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
In characterizing mutants and covalently inhibited complexes of Fusarium solani cutinase, which is a 197-residue lipolytic enzyme, 34 variant structures, crystallizing in 8 different crystal forms, have been determined, mostly at high resolution. Taking advantage of this considerable body of information, a structural comparative analysis was carried out to investigate the dynamics of cutinase. Surface loops were identified as the major flexible protein regions, particularly those forming the active-site groove, whereas the elements constituting the protein scaffold were found to retain the same conformation in all the cutinase variants studied. Flexibility turned out to be correlated with thermal motion. With a given crystal packing environment, a high flexibility turned out to be correlated with a low involvement in crystal packing contacts. The high degree of crystal polymorphism, which allowed different conformations with similar energy to be detected, made it possible to identify motions which would have remained unidentified if only a single crystal form had been available. Fairly good agreement was found to exist between the data obtained from the structural comparison and those from a molecular dynamics (MD) simulation carried out on the native enzyme. The crystallographic approach used in this study turned out to be a suitable tool for investigating cutinase dynamics. Because of the availability of a set of closely related proteins in different crystal environments, the intrinsic drawback of a crystallographic approach was bypassed. By combining several static pictures, the dynamics of the protein could be monitored much more realistically than what can be achieved on the basis of static pictures alone. | |||
Dynamics of Fusarium solani cutinase investigated through structural comparison among different crystal forms of its variants.,Longhi S, Nicolas A, Creveld L, Egmond M, Verrips CT, de Vlieg J, Martinez C, Cambillau C Proteins. 1996 Dec;26(4):442-58. PMID:8990497<ref>PMID:8990497</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1cuc" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Cutinase 3D structures|Cutinase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Fusarium vanettenii]] | |||
[[Category: Large Structures]] | |||
[[Category: Cambillau C]] | |||
[[Category: Longhi S]] |
Latest revision as of 10:19, 23 October 2024
CUTINASE, N172K, R196D MUTANT, ORTHORHOMBIC CRYSTAL FORMCUTINASE, N172K, R196D MUTANT, ORTHORHOMBIC CRYSTAL FORM
Structural highlights
FunctionCUTI1_FUSVN Catalyzes the hydrolysis of complex carboxylic polyesters found in the cell wall of plants (PubMed:18658138, PubMed:19810726, PubMed:8286366, PubMed:8555209). Degrades cutin, a macromolecule that forms the structure of the plant cuticle (PubMed:18658138, PubMed:19810726, PubMed:8286366, PubMed:8555209). Allows pathogenic fungi to penetrate through the cuticular barrier into the host plant during the initial stage of fungal infection (Ref.4).[1] [2] [3] [4] [PROSITE-ProRule:PRU10109] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedIn characterizing mutants and covalently inhibited complexes of Fusarium solani cutinase, which is a 197-residue lipolytic enzyme, 34 variant structures, crystallizing in 8 different crystal forms, have been determined, mostly at high resolution. Taking advantage of this considerable body of information, a structural comparative analysis was carried out to investigate the dynamics of cutinase. Surface loops were identified as the major flexible protein regions, particularly those forming the active-site groove, whereas the elements constituting the protein scaffold were found to retain the same conformation in all the cutinase variants studied. Flexibility turned out to be correlated with thermal motion. With a given crystal packing environment, a high flexibility turned out to be correlated with a low involvement in crystal packing contacts. The high degree of crystal polymorphism, which allowed different conformations with similar energy to be detected, made it possible to identify motions which would have remained unidentified if only a single crystal form had been available. Fairly good agreement was found to exist between the data obtained from the structural comparison and those from a molecular dynamics (MD) simulation carried out on the native enzyme. The crystallographic approach used in this study turned out to be a suitable tool for investigating cutinase dynamics. Because of the availability of a set of closely related proteins in different crystal environments, the intrinsic drawback of a crystallographic approach was bypassed. By combining several static pictures, the dynamics of the protein could be monitored much more realistically than what can be achieved on the basis of static pictures alone. Dynamics of Fusarium solani cutinase investigated through structural comparison among different crystal forms of its variants.,Longhi S, Nicolas A, Creveld L, Egmond M, Verrips CT, de Vlieg J, Martinez C, Cambillau C Proteins. 1996 Dec;26(4):442-58. PMID:8990497[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|