8emm: Difference between revisions

New page: ==Composite 70S ribosome structure for "Atomistic simulations of the E. coli ribosome provide selection criteria for translationally active substrates== <StructureSection load='8emm' size...
 
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[8emm]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8EMM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8EMM FirstGlance]. <br>
<table><tr><td colspan='2'>[[8emm]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8EMM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8EMM FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1MG:1N-METHYLGUANOSINE-5-MONOPHOSPHATE'>1MG</scene>, <scene name='pdbligand=2MA:2-METHYLADENOSINE-5-MONOPHOSPHATE'>2MA</scene>, <scene name='pdbligand=2MG:2N-METHYLGUANOSINE-5-MONOPHOSPHATE'>2MG</scene>, <scene name='pdbligand=3TD:(1S)-1,4-ANHYDRO-1-(3-METHYL-2,4-DIOXO-1,2,3,4-TETRAHYDROPYRIMIDIN-5-YL)-5-O-PHOSPHONO-D-RIBITOL'>3TD</scene>, <scene name='pdbligand=4D4:(2S,3R)-2-AZANYL-5-CARBAMIMIDAMIDO-3-OXIDANYL-PENTANOIC+ACID'>4D4</scene>, <scene name='pdbligand=4OC:4N,O2-METHYLCYTIDINE-5-MONOPHOSPHATE'>4OC</scene>, <scene name='pdbligand=5MC:5-METHYLCYTIDINE-5-MONOPHOSPHATE'>5MC</scene>, <scene name='pdbligand=5MU:5-METHYLURIDINE+5-MONOPHOSPHATE'>5MU</scene>, <scene name='pdbligand=6MZ:N6-METHYLADENOSINE-5-MONOPHOSPHATE'>6MZ</scene>, <scene name='pdbligand=8AN:3-AMINO-3-DEOXYADENOSINE+5-(DIHYDROGEN+PHOSPHATE)'>8AN</scene>, <scene name='pdbligand=D2T:(3R)-3-(METHYLSULFANYL)-L-ASPARTIC+ACID'>D2T</scene>, <scene name='pdbligand=G7M:N7-METHYL-GUANOSINE-5-MONOPHOSPHATE'>G7M</scene>, <scene name='pdbligand=H2U:5,6-DIHYDROURIDINE-5-MONOPHOSPHATE'>H2U</scene>, <scene name='pdbligand=IAS:BETA-L-ASPARTIC+ACID'>IAS</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MA6:6N-DIMETHYLADENOSINE-5-MONOPHOSHATE'>MA6</scene>, <scene name='pdbligand=MEQ:N5-METHYLGLUTAMINE'>MEQ</scene>, <scene name='pdbligand=MET:METHIONINE'>MET</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MS6:(2S)-2-amino-4-(methylsulfanyl)butane-1-thiol'>MS6</scene>, <scene name='pdbligand=OMC:O2-METHYLYCYTIDINE-5-MONOPHOSPHATE'>OMC</scene>, <scene name='pdbligand=OMG:O2-METHYLGUANOSINE-5-MONOPHOSPHATE'>OMG</scene>, <scene name='pdbligand=OMU:O2-METHYLURIDINE+5-MONOPHOSPHATE'>OMU</scene>, <scene name='pdbligand=PAR:PAROMOMYCIN'>PAR</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=SPD:SPERMIDINE'>SPD</scene>, <scene name='pdbligand=SPM:SPERMINE'>SPM</scene>, <scene name='pdbligand=UR3:3-METHYLURIDINE-5-MONOPHOSHATE'>UR3</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.1&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1MG:1N-METHYLGUANOSINE-5-MONOPHOSPHATE'>1MG</scene>, <scene name='pdbligand=2MA:2-METHYLADENOSINE-5-MONOPHOSPHATE'>2MA</scene>, <scene name='pdbligand=2MG:2N-METHYLGUANOSINE-5-MONOPHOSPHATE'>2MG</scene>, <scene name='pdbligand=3TD:(1S)-1,4-ANHYDRO-1-(3-METHYL-2,4-DIOXO-1,2,3,4-TETRAHYDROPYRIMIDIN-5-YL)-5-O-PHOSPHONO-D-RIBITOL'>3TD</scene>, <scene name='pdbligand=4D4:(2S,3R)-2-AZANYL-5-CARBAMIMIDAMIDO-3-OXIDANYL-PENTANOIC+ACID'>4D4</scene>, <scene name='pdbligand=4OC:4N,O2-METHYLCYTIDINE-5-MONOPHOSPHATE'>4OC</scene>, <scene name='pdbligand=5MC:5-METHYLCYTIDINE-5-MONOPHOSPHATE'>5MC</scene>, <scene name='pdbligand=5MU:5-METHYLURIDINE+5-MONOPHOSPHATE'>5MU</scene>, <scene name='pdbligand=6MZ:N6-METHYLADENOSINE-5-MONOPHOSPHATE'>6MZ</scene>, <scene name='pdbligand=8AN:3-AMINO-3-DEOXYADENOSINE+5-(DIHYDROGEN+PHOSPHATE)'>8AN</scene>, <scene name='pdbligand=D2T:(3R)-3-(METHYLSULFANYL)-L-ASPARTIC+ACID'>D2T</scene>, <scene name='pdbligand=G7M:N7-METHYL-GUANOSINE-5-MONOPHOSPHATE'>G7M</scene>, <scene name='pdbligand=H2U:5,6-DIHYDROURIDINE-5-MONOPHOSPHATE'>H2U</scene>, <scene name='pdbligand=IAS:BETA-L-ASPARTIC+ACID'>IAS</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MA6:6N-DIMETHYLADENOSINE-5-MONOPHOSHATE'>MA6</scene>, <scene name='pdbligand=MEQ:N5-METHYLGLUTAMINE'>MEQ</scene>, <scene name='pdbligand=MET:METHIONINE'>MET</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MS6:(2S)-2-amino-4-(methylsulfanyl)butane-1-thiol'>MS6</scene>, <scene name='pdbligand=OMC:O2-METHYLYCYTIDINE-5-MONOPHOSPHATE'>OMC</scene>, <scene name='pdbligand=OMG:O2-METHYLGUANOSINE-5-MONOPHOSPHATE'>OMG</scene>, <scene name='pdbligand=OMU:O2-METHYLURIDINE+5-MONOPHOSPHATE'>OMU</scene>, <scene name='pdbligand=PAR:PAROMOMYCIN'>PAR</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=SPD:SPERMIDINE'>SPD</scene>, <scene name='pdbligand=SPM:SPERMINE'>SPM</scene>, <scene name='pdbligand=UR3:3-METHYLURIDINE-5-MONOPHOSHATE'>UR3</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8emm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8emm OCA], [https://pdbe.org/8emm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8emm RCSB], [https://www.ebi.ac.uk/pdbsum/8emm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8emm ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8emm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8emm OCA], [https://pdbe.org/8emm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8emm RCSB], [https://www.ebi.ac.uk/pdbsum/8emm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8emm ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/RL2_ECOLI RL2_ECOLI] One of the primary rRNA binding proteins. Located near the base of the L1 stalk, it is probably also mobile. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is highly controversial.[HAMAP-Rule:MF_01320_B]  In the E.coli 70S ribosome in the initiation state it has been modeled to make several contacts with the 16S rRNA (forming bridge B7b, PubMed:12809609); these contacts are broken in the model with bound EF-G.[HAMAP-Rule:MF_01320_B]
[https://www.uniprot.org/uniprot/RL2_ECOLI RL2_ECOLI] One of the primary rRNA binding proteins. Located near the base of the L1 stalk, it is probably also mobile. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is highly controversial.[HAMAP-Rule:MF_01320_B]  In the E.coli 70S ribosome in the initiation state it has been modeled to make several contacts with the 16S rRNA (forming bridge B7b, PubMed:12809609); these contacts are broken in the model with bound EF-G.[HAMAP-Rule:MF_01320_B]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
As genetic code expansion advances beyond L-alpha-amino acids to backbone modifications and new polymerization chemistries, delineating what substrates the ribosome can accommodate remains a challenge. The Escherichia coli ribosome tolerates non-L-alpha-amino acids in vitro, but few structural insights that explain how are available, and the boundary conditions for efficient bond formation are so far unknown. Here we determine a high-resolution cryogenic electron microscopy structure of the E. coli ribosome containing alpha-amino acid monomers and use metadynamics simulations to define energy surface minima and understand incorporation efficiencies. Reactive monomers across diverse structural classes favour a conformational space where the aminoacyl-tRNA nucleophile is &lt;4 A from the peptidyl-tRNA carbonyl with a Burgi-Dunitz angle of 76-115 degrees . Monomers with free energy minima that fall outside this conformational space do not react efficiently. This insight should accelerate the in vivo and in vitro ribosomal synthesis of sequence-defined, non-peptide heterooligomers.
Atomistic simulations of the Escherichia coli ribosome provide selection criteria for translationally active substrates.,Watson ZL, Knudson IJ, Ward FR, Miller SJ, Cate JHD, Schepartz A, Abramyan AM Nat Chem. 2023 Jul;15(7):913-921. doi: 10.1038/s41557-023-01226-w. Epub 2023 Jun , 12. PMID:37308707<ref>PMID:37308707</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 8emm" style="background-color:#fffaf0;"></div>
==See Also==
*[[Ribosome 3D structures|Ribosome 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA