8ox4: Difference between revisions
New page: '''Unreleased structure''' The entry 8ox4 is ON HOLD Authors: Description: Category: Unreleased Structures |
No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Cryo-EM structure of ATP8B1-CDC50A in E1-ATP conformation== | |||
<StructureSection load='8ox4' size='340' side='right'caption='[[8ox4]], [[Resolution|resolution]] 3.40Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[8ox4]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8OX4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8OX4 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.4Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACP:PHOSPHOMETHYLPHOSPHONIC+ACID+ADENYLATE+ESTER'>ACP</scene>, <scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8ox4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8ox4 OCA], [https://pdbe.org/8ox4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8ox4 RCSB], [https://www.ebi.ac.uk/pdbsum/8ox4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8ox4 ProSAT]</span></td></tr> | |||
</table> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Asymmetric distribution of phospholipids in eukaryotic membranes is essential for cell integrity, signaling pathways, and vesicular trafficking. P4-ATPases, also known as flippases, participate in creating and maintaining this asymmetry through active transport of phospholipids from the exoplasmic to the cytosolic leaflet. Here, we present a total of nine cryo-electron microscopy structures of the human flippase ATP8B1-CDC50A complex at 2.4 to 3.1 A overall resolution, along with functional and computational studies, addressing the autophosphorylation steps from ATP, substrate recognition and occlusion, as well as a phosphoinositide binding site. We find that the P4-ATPase transport site is occupied by water upon phosphorylation from ATP. Additionally, we identify two different autoinhibited states, a closed and an outward-open conformation. Furthermore, we identify and characterize the PI(3,4,5)P(3) binding site of ATP8B1 in an electropositive pocket between transmembrane segments 5, 7, 8, and 10. Our study also highlights the structural basis of a broad lipid specificity of ATP8B1 and adds phosphatidylinositol as a transport substrate for ATP8B1. We report a critical role of the sn-2 ester bond of glycerophospholipids in substrate recognition by ATP8B1 through conserved S403. These findings provide fundamental insights into ATP8B1 catalytic cycle and regulation, and substrate recognition in P4-ATPases. | |||
Activation and substrate specificity of the human P4-ATPase ATP8B1.,Dieudonne T, Kummerer F, Laursen MJ, Stock C, Flygaard RK, Khalid S, Lenoir G, Lyons JA, Lindorff-Larsen K, Nissen P Nat Commun. 2023 Nov 18;14(1):7492. doi: 10.1038/s41467-023-42828-9. PMID:37980352<ref>PMID:37980352</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 8ox4" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Dieudonne T]] | |||
[[Category: Juknaviciute Laursen M]] | |||
[[Category: Khalid S]] | |||
[[Category: Kock Flygaard R]] | |||
[[Category: Kummerer F]] | |||
[[Category: Lenoir G]] | |||
[[Category: Lindorff-Larsen K]] | |||
[[Category: Lyons JA]] | |||
[[Category: Nissen P]] | |||
[[Category: Stock C]] |
Latest revision as of 12:48, 17 October 2024
Cryo-EM structure of ATP8B1-CDC50A in E1-ATP conformationCryo-EM structure of ATP8B1-CDC50A in E1-ATP conformation
Structural highlights
Publication Abstract from PubMedAsymmetric distribution of phospholipids in eukaryotic membranes is essential for cell integrity, signaling pathways, and vesicular trafficking. P4-ATPases, also known as flippases, participate in creating and maintaining this asymmetry through active transport of phospholipids from the exoplasmic to the cytosolic leaflet. Here, we present a total of nine cryo-electron microscopy structures of the human flippase ATP8B1-CDC50A complex at 2.4 to 3.1 A overall resolution, along with functional and computational studies, addressing the autophosphorylation steps from ATP, substrate recognition and occlusion, as well as a phosphoinositide binding site. We find that the P4-ATPase transport site is occupied by water upon phosphorylation from ATP. Additionally, we identify two different autoinhibited states, a closed and an outward-open conformation. Furthermore, we identify and characterize the PI(3,4,5)P(3) binding site of ATP8B1 in an electropositive pocket between transmembrane segments 5, 7, 8, and 10. Our study also highlights the structural basis of a broad lipid specificity of ATP8B1 and adds phosphatidylinositol as a transport substrate for ATP8B1. We report a critical role of the sn-2 ester bond of glycerophospholipids in substrate recognition by ATP8B1 through conserved S403. These findings provide fundamental insights into ATP8B1 catalytic cycle and regulation, and substrate recognition in P4-ATPases. Activation and substrate specificity of the human P4-ATPase ATP8B1.,Dieudonne T, Kummerer F, Laursen MJ, Stock C, Flygaard RK, Khalid S, Lenoir G, Lyons JA, Lindorff-Larsen K, Nissen P Nat Commun. 2023 Nov 18;14(1):7492. doi: 10.1038/s41467-023-42828-9. PMID:37980352[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|