8hkz: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
New page: '''Unreleased structure''' The entry 8hkz is ON HOLD Authors: Wang, Y.H., Zhou, J. Description: Cryo-EM Structures and Translocation Mechanism of Crenarchaeota Ribosome [[Category: Unr...
 
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 8hkz is ON HOLD
==Cryo-EM Structures and Translocation Mechanism of Crenarchaeota Ribosome==
<StructureSection load='8hkz' size='340' side='right'caption='[[8hkz]], [[Resolution|resolution]] 4.78&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[8hkz]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Sulfolobus_acidocaldarius_DSM_639 Sulfolobus acidocaldarius DSM 639]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8HKZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8HKZ FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 4.78&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=UNK:UNKNOWN'>UNK</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8hkz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8hkz OCA], [https://pdbe.org/8hkz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8hkz RCSB], [https://www.ebi.ac.uk/pdbsum/8hkz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8hkz ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/RL1_SULAC RL1_SULAC] Probably involved in E site tRNA release (By similarity). Binds directly to 23S rRNA.  Protein L1 is also a translational repressor protein, it controls the translation of its operon by binding to its mRNA (By similarity).
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Archaeal ribosomes have many domain-specific features; however, our understanding of these structures is limited. We present 10 cryo-electron microscopy (cryo-EM) structures of the archaeal ribosome from crenarchaeota Sulfolobus acidocaldarius (Sac) at 2.7-5.7 A resolution. We observed unstable conformations of H68 and h44 of ribosomal RNA (rRNA) in the subunit structures, which may interfere with subunit association. These subunit structures provided models for 12 rRNA expansion segments and 3 novel r-proteins. Furthermore, the 50S-aRF1 complex structure showed the unique domain orientation of aRF1, possibly explaining P-site transfer RNA (tRNA) release after translation termination. Sac 70S complexes were captured in seven distinct steps of the tRNA translocation reaction, confirming conserved structural features during archaeal ribosome translocation. In aEF2-engaged 70S ribosome complexes, 3D classification of cryo-EM data based on 30S head domain identified two new translocation intermediates with 30S head domain tilted 5-6 degrees enabling its disengagement from the translocated tRNA and its release post-translocation. Additionally, we observed conformational changes to aEF2 during ribosome binding and switching from three different states. Our structural and biochemical data provide new insights into archaeal translation and ribosome translocation.


Authors: Wang, Y.H., Zhou, J.
Cryo-electron microscopy structure and translocation mechanism of the crenarchaeal ribosome.,Wang YH, Dai H, Zhang L, Wu Y, Wang J, Wang C, Xu CH, Hou H, Yang B, Zhu Y, Zhang X, Zhou J Nucleic Acids Res. 2023 Sep 22;51(17):8909-8924. doi: 10.1093/nar/gkad661. PMID:37604686<ref>PMID:37604686</ref>


Description: Cryo-EM Structures and Translocation Mechanism of Crenarchaeota Ribosome
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
[[Category: Wang, Y.H]]
<div class="pdbe-citations 8hkz" style="background-color:#fffaf0;"></div>
[[Category: Zhou, J]]
 
==See Also==
*[[Ribosome 3D structures|Ribosome 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Sulfolobus acidocaldarius DSM 639]]
[[Category: Wang YH]]
[[Category: Zhou J]]

Latest revision as of 15:14, 23 October 2024

Cryo-EM Structures and Translocation Mechanism of Crenarchaeota RibosomeCryo-EM Structures and Translocation Mechanism of Crenarchaeota Ribosome

Structural highlights

8hkz is a 10 chain structure with sequence from Sulfolobus acidocaldarius DSM 639. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 4.78Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RL1_SULAC Probably involved in E site tRNA release (By similarity). Binds directly to 23S rRNA. Protein L1 is also a translational repressor protein, it controls the translation of its operon by binding to its mRNA (By similarity).

Publication Abstract from PubMed

Archaeal ribosomes have many domain-specific features; however, our understanding of these structures is limited. We present 10 cryo-electron microscopy (cryo-EM) structures of the archaeal ribosome from crenarchaeota Sulfolobus acidocaldarius (Sac) at 2.7-5.7 A resolution. We observed unstable conformations of H68 and h44 of ribosomal RNA (rRNA) in the subunit structures, which may interfere with subunit association. These subunit structures provided models for 12 rRNA expansion segments and 3 novel r-proteins. Furthermore, the 50S-aRF1 complex structure showed the unique domain orientation of aRF1, possibly explaining P-site transfer RNA (tRNA) release after translation termination. Sac 70S complexes were captured in seven distinct steps of the tRNA translocation reaction, confirming conserved structural features during archaeal ribosome translocation. In aEF2-engaged 70S ribosome complexes, 3D classification of cryo-EM data based on 30S head domain identified two new translocation intermediates with 30S head domain tilted 5-6 degrees enabling its disengagement from the translocated tRNA and its release post-translocation. Additionally, we observed conformational changes to aEF2 during ribosome binding and switching from three different states. Our structural and biochemical data provide new insights into archaeal translation and ribosome translocation.

Cryo-electron microscopy structure and translocation mechanism of the crenarchaeal ribosome.,Wang YH, Dai H, Zhang L, Wu Y, Wang J, Wang C, Xu CH, Hou H, Yang B, Zhu Y, Zhang X, Zhou J Nucleic Acids Res. 2023 Sep 22;51(17):8909-8924. doi: 10.1093/nar/gkad661. PMID:37604686[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wang YH, Dai H, Zhang L, Wu Y, Wang J, Wang C, Xu CH, Hou H, Yang B, Zhu Y, Zhang X, Zhou J. Cryo-electron microscopy structure and translocation mechanism of the crenarchaeal ribosome. Nucleic Acids Res. 2023 Sep 22;51(17):8909-8924. PMID:37604686 doi:10.1093/nar/gkad661

8hkz, resolution 4.78Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA