8beh: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[8beh]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Arabidopsis_thaliana Arabidopsis thaliana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8BEH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8BEH FirstGlance]. <br> | <table><tr><td colspan='2'>[[8beh]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Arabidopsis_thaliana Arabidopsis thaliana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8BEH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8BEH FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3PH:1,2-DIACYL-GLYCEROL-3-SN-PHOSPHATE'>3PH</scene>, <scene name='pdbligand=8Q1:S-[2- | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.29Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3PH:1,2-DIACYL-GLYCEROL-3-SN-PHOSPHATE'>3PH</scene>, <scene name='pdbligand=8Q1:~{S}-[2-[3-[[(2~{R})-3,3-dimethyl-2-oxidanyl-4-phosphonooxy-butanoyl]amino]propanoylamino]ethyl]+dodecanethioate'>8Q1</scene>, <scene name='pdbligand=PC7:(7S)-4-HYDROXY-N,N,N-TRIMETHYL-9-OXO-7-[(PALMITOYLOXY)METHYL]-3,5,8-TRIOXA-4-PHOSPHAHEXACOSAN-1-AMINIUM+4-OXIDE'>PC7</scene>, <scene name='pdbligand=PGT:(1S)-2-{[{[(2R)-2,3-DIHYDROXYPROPYL]OXY}(HYDROXY)PHOSPHORYL]OXY}-1-[(PALMITOYLOXY)METHYL]ETHYL+STEARATE'>PGT</scene>, <scene name='pdbligand=PTY:PHOSPHATIDYLETHANOLAMINE'>PTY</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8beh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8beh OCA], [https://pdbe.org/8beh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8beh RCSB], [https://www.ebi.ac.uk/pdbsum/8beh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8beh ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8beh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8beh OCA], [https://pdbe.org/8beh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8beh RCSB], [https://www.ebi.ac.uk/pdbsum/8beh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8beh ProSAT]</span></td></tr> | ||
</table> | </table> | ||
Line 13: | Line 14: | ||
Protein complexes of the mitochondrial respiratory chain assemble into respiratory supercomplexes. Here we present the high-resolution electron cryo-microscopy structure of the Arabidopsis respiratory supercomplex consisting of complex I and a complex III dimer, with a total of 68 protein subunits and numerous bound cofactors. A complex I-ferredoxin, subunit B14.7 and P9, a newly defined subunit of plant complex I, mediate supercomplex formation. The component complexes stabilize one another, enabling new detailed insights into their structure. We describe (1) an interrupted aqueous passage for proton translocation in the membrane arm of complex I; (2) a new coenzyme A within the carbonic anhydrase module of plant complex I defining a second catalytic centre; and (3) the water structure at the proton exit pathway of complex III(2) with a co-purified ubiquinone in the Q(O) site. We propose that the main role of the plant supercomplex is to stabilize its components in the membrane. | Protein complexes of the mitochondrial respiratory chain assemble into respiratory supercomplexes. Here we present the high-resolution electron cryo-microscopy structure of the Arabidopsis respiratory supercomplex consisting of complex I and a complex III dimer, with a total of 68 protein subunits and numerous bound cofactors. A complex I-ferredoxin, subunit B14.7 and P9, a newly defined subunit of plant complex I, mediate supercomplex formation. The component complexes stabilize one another, enabling new detailed insights into their structure. We describe (1) an interrupted aqueous passage for proton translocation in the membrane arm of complex I; (2) a new coenzyme A within the carbonic anhydrase module of plant complex I defining a second catalytic centre; and (3) the water structure at the proton exit pathway of complex III(2) with a co-purified ubiquinone in the Q(O) site. We propose that the main role of the plant supercomplex is to stabilize its components in the membrane. | ||
Cryo-EM structure of the respiratory I + III(2) supercomplex from Arabidopsis thaliana at 2 A resolution.,Klusch N, Dreimann M, Senkler J, Rugen N, Kuhlbrandt W, Braun HP Nat Plants. | Cryo-EM structure of the respiratory I + III(2) supercomplex from Arabidopsis thaliana at 2 A resolution.,Klusch N, Dreimann M, Senkler J, Rugen N, Kuhlbrandt W, Braun HP Nat Plants. 2023 Jan;9(1):142-156. doi: 10.1038/s41477-022-01308-6. Epub 2022 Dec , 30. PMID:36585502<ref>PMID:36585502</ref> | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
Latest revision as of 14:55, 23 October 2024
Cryo-EM structure of the Arabidopsis thaliana I+III2 supercomplex (CI membrane tip)Cryo-EM structure of the Arabidopsis thaliana I+III2 supercomplex (CI membrane tip)
Structural highlights
FunctionNU5M_ARATH Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). Publication Abstract from PubMedProtein complexes of the mitochondrial respiratory chain assemble into respiratory supercomplexes. Here we present the high-resolution electron cryo-microscopy structure of the Arabidopsis respiratory supercomplex consisting of complex I and a complex III dimer, with a total of 68 protein subunits and numerous bound cofactors. A complex I-ferredoxin, subunit B14.7 and P9, a newly defined subunit of plant complex I, mediate supercomplex formation. The component complexes stabilize one another, enabling new detailed insights into their structure. We describe (1) an interrupted aqueous passage for proton translocation in the membrane arm of complex I; (2) a new coenzyme A within the carbonic anhydrase module of plant complex I defining a second catalytic centre; and (3) the water structure at the proton exit pathway of complex III(2) with a co-purified ubiquinone in the Q(O) site. We propose that the main role of the plant supercomplex is to stabilize its components in the membrane. Cryo-EM structure of the respiratory I + III(2) supercomplex from Arabidopsis thaliana at 2 A resolution.,Klusch N, Dreimann M, Senkler J, Rugen N, Kuhlbrandt W, Braun HP Nat Plants. 2023 Jan;9(1):142-156. doi: 10.1038/s41477-022-01308-6. Epub 2022 Dec , 30. PMID:36585502[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|