8b9z: Difference between revisions
m Protected "8b9z" [edit=sysop:move=sysop] |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==Drosophila melanogaster complex I in the Active state (Dm1)== | ||
<StructureSection load='8b9z' size='340' side='right'caption='[[8b9z]], [[Resolution|resolution]] 3.28Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[8b9z]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Drosophila_melanogaster Drosophila melanogaster]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8B9Z OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8B9Z FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.28Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=2MR:N3,+N4-DIMETHYLARGININE'>2MR</scene>, <scene name='pdbligand=3PE:1,2-DIACYL-SN-GLYCERO-3-PHOSPHOETHANOLAMINE'>3PE</scene>, <scene name='pdbligand=CDL:CARDIOLIPIN'>CDL</scene>, <scene name='pdbligand=DGT:2-DEOXYGUANOSINE-5-TRIPHOSPHATE'>DGT</scene>, <scene name='pdbligand=EHZ:~{S}-[2-[3-[[(2~{R})-3,3-dimethyl-2-oxidanyl-4-phosphonooxy-butanoyl]amino]propanoylamino]ethyl]+(3~{S})-3-oxidanyltetradecanethioate'>EHZ</scene>, <scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=FMN:FLAVIN+MONONUCLEOTIDE'>FMN</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=NDP:NADPH+DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NDP</scene>, <scene name='pdbligand=PC1:1,2-DIACYL-SN-GLYCERO-3-PHOSPHOCHOLINE'>PC1</scene>, <scene name='pdbligand=UQ9:UBIQUINONE-9'>UQ9</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8b9z FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8b9z OCA], [https://pdbe.org/8b9z PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8b9z RCSB], [https://www.ebi.ac.uk/pdbsum/8b9z PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8b9z ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/NU3M_DROME NU3M_DROME] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Respiratory complex I powers ATP synthesis by oxidative phosphorylation, exploiting the energy from NADH oxidation by ubiquinone to drive protons across an energy-transducing membrane. Drosophila melanogaster is a candidate model organism for complex I due to its high evolutionary conservation with the mammalian enzyme, well-developed genetic toolkit, and complex physiology for studies in specific cell types and tissues. Here, we isolate complex I from Drosophila and determine its structure, revealing a 43-subunit assembly with high structural homology to its 45-subunit mammalian counterpart, including a hitherto unknown homologue to subunit NDUFA3. The major conformational state of the Drosophila enzyme is the mammalian-type 'ready-to-go' active resting state, with a fully ordered and enclosed ubiquinone-binding site, but a subtly altered global conformation related to changes in subunit ND6. The mammalian-type 'deactive' pronounced resting state is not observed: in two minor states, the ubiquinone-binding site is unchanged, but a deactive-type pi-bulge is present in ND6-TMH3. Our detailed structural knowledge of Drosophila complex I provides a foundation for new approaches to disentangle mechanisms of complex I catalysis and regulation in bioenergetics and physiology. | |||
Cryo-EM structures of mitochondrial respiratory complex I from Drosophila melanogaster.,Agip AA, Chung I, Sanchez-Martinez A, Whitworth AJ, Hirst J Elife. 2023 Jan 9;12:e84424. doi: 10.7554/eLife.84424. PMID:36622099<ref>PMID:36622099</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 8b9z" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Drosophila melanogaster]] | |||
[[Category: Large Structures]] | |||
[[Category: Agip AA]] | |||
[[Category: Chung I]] | |||
[[Category: Hirst J]] | |||
[[Category: Sanchez-Martinez A]] | |||
[[Category: Whitworth AJ]] |
Latest revision as of 14:55, 23 October 2024
Drosophila melanogaster complex I in the Active state (Dm1)Drosophila melanogaster complex I in the Active state (Dm1)
Structural highlights
FunctionNU3M_DROME Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). Publication Abstract from PubMedRespiratory complex I powers ATP synthesis by oxidative phosphorylation, exploiting the energy from NADH oxidation by ubiquinone to drive protons across an energy-transducing membrane. Drosophila melanogaster is a candidate model organism for complex I due to its high evolutionary conservation with the mammalian enzyme, well-developed genetic toolkit, and complex physiology for studies in specific cell types and tissues. Here, we isolate complex I from Drosophila and determine its structure, revealing a 43-subunit assembly with high structural homology to its 45-subunit mammalian counterpart, including a hitherto unknown homologue to subunit NDUFA3. The major conformational state of the Drosophila enzyme is the mammalian-type 'ready-to-go' active resting state, with a fully ordered and enclosed ubiquinone-binding site, but a subtly altered global conformation related to changes in subunit ND6. The mammalian-type 'deactive' pronounced resting state is not observed: in two minor states, the ubiquinone-binding site is unchanged, but a deactive-type pi-bulge is present in ND6-TMH3. Our detailed structural knowledge of Drosophila complex I provides a foundation for new approaches to disentangle mechanisms of complex I catalysis and regulation in bioenergetics and physiology. Cryo-EM structures of mitochondrial respiratory complex I from Drosophila melanogaster.,Agip AA, Chung I, Sanchez-Martinez A, Whitworth AJ, Hirst J Elife. 2023 Jan 9;12:e84424. doi: 10.7554/eLife.84424. PMID:36622099[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|