8eag: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "8eag" [edit=sysop:move=sysop]
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 8eag is ON HOLD
==SsoMCM hexamer bound to Mg/ADP-BeFx and 12-mer oligo-dT. Class 2==
 
<StructureSection load='8eag' size='340' side='right'caption='[[8eag]], [[Resolution|resolution]] 3.01&Aring;' scene=''>
Authors:  
== Structural highlights ==
 
<table><tr><td colspan='2'>[[8eag]] is a 7 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharolobus_solfataricus_P2 Saccharolobus solfataricus P2] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8EAG OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8EAG FirstGlance]. <br>
Description:  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.01&#8491;</td></tr>
[[Category: Unreleased Structures]]
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=08T:[[[(2R,3S,4R,5R)-5-(6-AMINOPURIN-9-YL)-3,4-BIS(OXIDANYL)OXOLAN-2-YL]METHOXY-OXIDANYL-PHOSPHORYL]OXY-OXIDANYL-PHOSPHORYL]OXY-TRIS(FLUORANYL)BERYLLIUM'>08T</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8eag FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8eag OCA], [https://pdbe.org/8eag PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8eag RCSB], [https://www.ebi.ac.uk/pdbsum/8eag PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8eag ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/MCM_SACS2 MCM_SACS2] Presumptive replicative helicase. Has ATPase and DNA helicase activities. The latter preferentially melts 5'-tailed oligonucleotides and is stimulated by the SSB protein (single-stranded DNA binding protein). The active ATPase sites in the MCM ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The helicase function is proposed to use a partially sequential mode of ATP hydrolysis; the complex appears to tolerate multiple catalytically inactive subunits.<ref>PMID:11821426</ref>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Saccharolobus solfataricus P2]]
[[Category: Synthetic construct]]
[[Category: Enemark EJ]]
[[Category: Meagher M]]
[[Category: Myasnikov A]]

Latest revision as of 09:33, 19 June 2024

SsoMCM hexamer bound to Mg/ADP-BeFx and 12-mer oligo-dT. Class 2SsoMCM hexamer bound to Mg/ADP-BeFx and 12-mer oligo-dT. Class 2

Structural highlights

8eag is a 7 chain structure with sequence from Saccharolobus solfataricus P2 and Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.01Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

MCM_SACS2 Presumptive replicative helicase. Has ATPase and DNA helicase activities. The latter preferentially melts 5'-tailed oligonucleotides and is stimulated by the SSB protein (single-stranded DNA binding protein). The active ATPase sites in the MCM ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The helicase function is proposed to use a partially sequential mode of ATP hydrolysis; the complex appears to tolerate multiple catalytically inactive subunits.[1]

References

  1. Carpentieri F, De Felice M, De Falco M, Rossi M, Pisani FM. Physical and functional interaction between the mini-chromosome maintenance-like DNA helicase and the single-stranded DNA binding protein from the crenarchaeon Sulfolobus solfataricus. J Biol Chem. 2002 Apr 5;277(14):12118-27. Epub 2002 Jan 30. PMID:11821426 doi:10.1074/jbc.M200091200

8eag, resolution 3.01Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA