8a98: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==CRYO-EM STRUCTURE OF LEISHMANIA MAJOR 80S RIBOSOME : snoRNA MUTANT== | |||
<StructureSection load='8a98' size='340' side='right'caption='[[8a98]], [[Resolution|resolution]] 2.46Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[8a98]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Leishmania_major_strain_Friedlin Leishmania major strain Friedlin]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8A98 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8A98 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.46Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1MA:6-HYDRO-1-METHYLADENOSINE-5-MONOPHOSPHATE'>1MA</scene>, <scene name='pdbligand=5MC:5-METHYLCYTIDINE-5-MONOPHOSPHATE'>5MC</scene>, <scene name='pdbligand=A2M:2-O-METHYLADENOSINE+5-(DIHYDROGEN+PHOSPHATE)'>A2M</scene>, <scene name='pdbligand=C4J:(5S)-5-{3-[(3S)-3-amino-3-carboxypropyl]-1-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl}-2,5-anhydro-1-O-phosphono-L-arabinitol'>C4J</scene>, <scene name='pdbligand=G7M:N7-METHYL-GUANOSINE-5-MONOPHOSPHATE'>G7M</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MA6:6N-DIMETHYLADENOSINE-5-MONOPHOSHATE'>MA6</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=OMC:O2-METHYLYCYTIDINE-5-MONOPHOSPHATE'>OMC</scene>, <scene name='pdbligand=OMG:O2-METHYLGUANOSINE-5-MONOPHOSPHATE'>OMG</scene>, <scene name='pdbligand=OMU:O2-METHYLURIDINE+5-MONOPHOSPHATE'>OMU</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8a98 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8a98 OCA], [https://pdbe.org/8a98 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8a98 RCSB], [https://www.ebi.ac.uk/pdbsum/8a98 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8a98 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/Q4Q8G4_LEIMA Q4Q8G4_LEIMA] | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Leishmania is the causative agent of cutaneous and visceral diseases affecting millions of individuals worldwide. Pseudouridine (Psi), the most abundant modification on rRNA, changes during the parasite life cycle. Alterations in the level of a specific Psi in helix 69 (H69) affected ribosome function. To decipher the molecular mechanism of this phenotype, we determine the structure of ribosomes lacking the single Psi and its parental strain at approximately 2.4-3 A resolution using cryo-EM. Our findings demonstrate the significance of a single Psi on H69 to its structure and the importance for its interactions with helix 44 and specific tRNAs. Our study suggests that rRNA modification affects translation of mRNAs carrying codon bias due to selective accommodation of tRNAs by the ribosome. Based on the high-resolution structures, we propose a mechanism explaining how the ribosome selects specific tRNAs. | |||
Structural and mechanistic insights into the function of Leishmania ribosome lacking a single pseudouridine modification.,Rajan KS, Aryal S, Hiregange DG, Bashan A, Madmoni H, Olami M, Doniger T, Cohen-Chalamish S, Pescher P, Taoka M, Nobe Y, Fedorenko A, Bose T, Zimermann E, Prina E, Aharon-Hefetz N, Pilpel Y, Isobe T, Unger R, Spath GF, Yonath A, Michaeli S Cell Rep. 2024 May 28;43(5):114203. doi: 10.1016/j.celrep.2024.114203. Epub 2024 , May 8. PMID:38722744<ref>PMID:38722744</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 8a98" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Ribosome 3D structures|Ribosome 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Leishmania major strain Friedlin]] | |||
[[Category: Bashan A]] | |||
[[Category: Rajan KS]] | |||
[[Category: Yonath A]] |
Latest revision as of 14:52, 23 October 2024
CRYO-EM STRUCTURE OF LEISHMANIA MAJOR 80S RIBOSOME : snoRNA MUTANTCRYO-EM STRUCTURE OF LEISHMANIA MAJOR 80S RIBOSOME : snoRNA MUTANT
Structural highlights
FunctionPublication Abstract from PubMedLeishmania is the causative agent of cutaneous and visceral diseases affecting millions of individuals worldwide. Pseudouridine (Psi), the most abundant modification on rRNA, changes during the parasite life cycle. Alterations in the level of a specific Psi in helix 69 (H69) affected ribosome function. To decipher the molecular mechanism of this phenotype, we determine the structure of ribosomes lacking the single Psi and its parental strain at approximately 2.4-3 A resolution using cryo-EM. Our findings demonstrate the significance of a single Psi on H69 to its structure and the importance for its interactions with helix 44 and specific tRNAs. Our study suggests that rRNA modification affects translation of mRNAs carrying codon bias due to selective accommodation of tRNAs by the ribosome. Based on the high-resolution structures, we propose a mechanism explaining how the ribosome selects specific tRNAs. Structural and mechanistic insights into the function of Leishmania ribosome lacking a single pseudouridine modification.,Rajan KS, Aryal S, Hiregange DG, Bashan A, Madmoni H, Olami M, Doniger T, Cohen-Chalamish S, Pescher P, Taoka M, Nobe Y, Fedorenko A, Bose T, Zimermann E, Prina E, Aharon-Hefetz N, Pilpel Y, Isobe T, Unger R, Spath GF, Yonath A, Michaeli S Cell Rep. 2024 May 28;43(5):114203. doi: 10.1016/j.celrep.2024.114203. Epub 2024 , May 8. PMID:38722744[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|