8dar: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
New page: '''Unreleased structure''' The entry 8dar is ON HOLD Authors: Description: Category: Unreleased Structures
 
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 8dar is ON HOLD
==Saccharomyces cerevisiae Ufd1/Npl4/Cdc48 complex unbound but in the presence of SUMO-ubiquitin(K48polyUb)-mEOS and ATP==
<StructureSection load='8dar' size='340' side='right'caption='[[8dar]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[8dar]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8DAR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8DAR FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8dar FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8dar OCA], [https://pdbe.org/8dar PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8dar RCSB], [https://www.ebi.ac.uk/pdbsum/8dar PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8dar ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/NPL4_YEAST NPL4_YEAST] Involved in the import of nuclear-targeted proteins into the nucleus and the export of poly(A) RNA out of the nucleus (PubMed:8930904, PubMed:11733065). Has a role in the endoplasmic reticulum-associated degradation (ERAD) pathway (PubMed:11739805, PubMed:11740563, PubMed:11847109). Required for the proteasome-dependent processing/activation of MGA2 and SPT23 transcription factors leading to the subsequent expression of OLE1 (PubMed:11733065). Has an additional role in the turnover of OLE1 where it targets ubiquitinated OLE1 and other proteins to the ERAD (PubMed:11847109). Regulates ubiquitin-mediated mitochondria protein degradation (PubMed:21070972). Involved in spindle disassembly probably by promoting the degradation of spindle assemby factors ASE1 and CDC5 at the end of mitosis (PubMed:14636562).<ref>PMID:11733065</ref> <ref>PMID:11739805</ref> <ref>PMID:11740563</ref> <ref>PMID:11847109</ref> <ref>PMID:14636562</ref> <ref>PMID:21070972</ref> <ref>PMID:8930904</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The Ufd1/Npl4/Cdc48 complex is a universal protein segregase that plays key roles in eukaryotic cellular processes. Its functions orchestrating the clearance or removal of polyubiquitylated targets are established; however, prior studies suggest that the complex also targets substrates modified by the ubiquitin-like protein SUMO. Here, we show that interactions between Ufd1 and SUMO enhance unfolding of substrates modified by SUMO-polyubiquitin hybrid chains by the budding yeast Ufd1/Npl4/Cdc48 complex compared to substrates modified by polyubiquitin chains, a difference that is accentuated when the complex has a choice between these substrates. Incubating Ufd1/Npl4/Cdc48 with a substrate modified by a SUMO-polyubiquitin hybrid chain produced a series of single-particle cryo-EM structures that reveal features of interactions between Ufd1/Npl4/Cdc48 and ubiquitin prior to and during unfolding of ubiquitin. These results are consistent with cellular functions for SUMO and ubiquitin modifications and support a physical model wherein Ufd1/Npl4/Cdc48, SUMO, and ubiquitin conjugation pathways converge to promote clearance of proteins modified with SUMO and polyubiquitin.


Authors:  
SUMO enhances unfolding of SUMO-polyubiquitin-modified substrates by the Ufd1/Npl4/Cdc48 complex.,Lee HG, Lemmon AA, Lima CD Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2213703120. doi: , 10.1073/pnas.2213703120. Epub 2022 Dec 27. PMID:36574706<ref>PMID:36574706</ref>


Description:  
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
<div class="pdbe-citations 8dar" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[3D structures of ubiquitin|3D structures of ubiquitin]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Lee HG]]
[[Category: Lima CD]]

Latest revision as of 08:20, 12 June 2024

Saccharomyces cerevisiae Ufd1/Npl4/Cdc48 complex unbound but in the presence of SUMO-ubiquitin(K48polyUb)-mEOS and ATPSaccharomyces cerevisiae Ufd1/Npl4/Cdc48 complex unbound but in the presence of SUMO-ubiquitin(K48polyUb)-mEOS and ATP

Structural highlights

8dar is a 8 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

NPL4_YEAST Involved in the import of nuclear-targeted proteins into the nucleus and the export of poly(A) RNA out of the nucleus (PubMed:8930904, PubMed:11733065). Has a role in the endoplasmic reticulum-associated degradation (ERAD) pathway (PubMed:11739805, PubMed:11740563, PubMed:11847109). Required for the proteasome-dependent processing/activation of MGA2 and SPT23 transcription factors leading to the subsequent expression of OLE1 (PubMed:11733065). Has an additional role in the turnover of OLE1 where it targets ubiquitinated OLE1 and other proteins to the ERAD (PubMed:11847109). Regulates ubiquitin-mediated mitochondria protein degradation (PubMed:21070972). Involved in spindle disassembly probably by promoting the degradation of spindle assemby factors ASE1 and CDC5 at the end of mitosis (PubMed:14636562).[1] [2] [3] [4] [5] [6] [7]

Publication Abstract from PubMed

The Ufd1/Npl4/Cdc48 complex is a universal protein segregase that plays key roles in eukaryotic cellular processes. Its functions orchestrating the clearance or removal of polyubiquitylated targets are established; however, prior studies suggest that the complex also targets substrates modified by the ubiquitin-like protein SUMO. Here, we show that interactions between Ufd1 and SUMO enhance unfolding of substrates modified by SUMO-polyubiquitin hybrid chains by the budding yeast Ufd1/Npl4/Cdc48 complex compared to substrates modified by polyubiquitin chains, a difference that is accentuated when the complex has a choice between these substrates. Incubating Ufd1/Npl4/Cdc48 with a substrate modified by a SUMO-polyubiquitin hybrid chain produced a series of single-particle cryo-EM structures that reveal features of interactions between Ufd1/Npl4/Cdc48 and ubiquitin prior to and during unfolding of ubiquitin. These results are consistent with cellular functions for SUMO and ubiquitin modifications and support a physical model wherein Ufd1/Npl4/Cdc48, SUMO, and ubiquitin conjugation pathways converge to promote clearance of proteins modified with SUMO and polyubiquitin.

SUMO enhances unfolding of SUMO-polyubiquitin-modified substrates by the Ufd1/Npl4/Cdc48 complex.,Lee HG, Lemmon AA, Lima CD Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2213703120. doi: , 10.1073/pnas.2213703120. Epub 2022 Dec 27. PMID:36574706[8]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Rape M, Hoppe T, Gorr I, Kalocay M, Richly H, Jentsch S. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell. 2001 Nov 30;107(5):667-77. PMID:11733065
  2. Bays NW, Wilhovsky SK, Goradia A, Hodgkiss-Harlow K, Hampton RY. HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol Biol Cell. 2001 Dec;12(12):4114-28. doi: 10.1091/mbc.12.12.4114. PMID:11739805 doi:http://dx.doi.org/10.1091/mbc.12.12.4114
  3. Ye Y, Meyer HH, Rapoport TA. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature. 2001 Dec 6;414(6864):652-6. PMID:11740563 doi:http://dx.doi.org/10.1038/414652a
  4. Braun S, Matuschewski K, Rape M, Thoms S, Jentsch S. Role of the ubiquitin-selective CDC48(UFD1/NPL4 )chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J. 2002 Feb 15;21(4):615-21. PMID:11847109
  5. Cao K, Nakajima R, Meyer HH, Zheng Y. The AAA-ATPase Cdc48/p97 regulates spindle disassembly at the end of mitosis. Cell. 2003 Oct 31;115(3):355-67. PMID:14636562
  6. Heo JM, Livnat-Levanon N, Taylor EB, Jones KT, Dephoure N, Ring J, Xie J, Brodsky JL, Madeo F, Gygi SP, Ashrafi K, Glickman MH, Rutter J. A stress-responsive system for mitochondrial protein degradation. Mol Cell. 2010 Nov 12;40(3):465-80. doi: 10.1016/j.molcel.2010.10.021. PMID:21070972 doi:http://dx.doi.org/10.1016/j.molcel.2010.10.021
  7. DeHoratius C, Silver PA. Nuclear transport defects and nuclear envelope alterations are associated with mutation of the Saccharomyces cerevisiae NPL4 gene. Mol Biol Cell. 1996 Nov;7(11):1835-55. PMID:8930904
  8. Lee HG, Lemmon AA, Lima CD. SUMO enhances unfolding of SUMO-polyubiquitin-modified substrates by the Ufd1/Npl4/Cdc48 complex. Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2213703120. PMID:36574706 doi:10.1073/pnas.2213703120

8dar, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA