7wr6: Difference between revisions
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/CASP4_HUMAN CASP4_HUMAN] Inflammatory caspase (PubMed:7797510, PubMed:23516580, PubMed:25119034). Essential effector of NLRP3 inflammasome-dependent CASP1 activation and IL1B and IL18 secretion in response to non-canonical activators, such as UVB radiation, cholera enterotoxin subunit B and cytosolic LPS (PubMed:22246630, PubMed:26174085, PubMed:26173988, PubMed:26508369, PubMed:25964352). Independently of NLRP3 inflammasome and CASP1, promotes pyroptosis, through GSDMD cleavage and activation, and IL1A, IL18 and HMGB1 release in response to non-canonical inflammasome activators (PubMed:24879791, PubMed:25964352). Plays a crucial role in the restriction of Salmonella typhimurium replication in colonic epithelial cells during infection (PubMed:25121752). In later stages of the infection, LPS from cytosolic Salmonella triggers CASP4 activation, which ultimately results in pyroptosis of infected cells and their extrusion into the gut lumen, as well as in IL18 secretion. Pyroptosis limits bacterial replication, while cytokine secretion promotes the recruitment and activation of immune cells and triggers mucosal inflammation. Involved in LPS-induced IL6 secretion; this activity may not require caspase enzymatic activity (PubMed:26508369). Involved in cell death induced by endoplasmic reticulum stress and by treatment with cytotoxic APP peptides found Alzheimer's patient brains (PubMed:15123740, PubMed:22246630, PubMed:23661706). Activated by direct binding to LPS without the need of an upstream sensor (PubMed:25119034). Does not directly process IL1B (PubMed:7743998, PubMed:7797592, PubMed:7797510). During non-canonical inflammasome activation, cuts CGAS and may play a role in the regulation of antiviral innate immune activation (PubMed:28314590).<ref>PMID:15123740</ref> <ref>PMID:22246630</ref> <ref>PMID:23516580</ref> <ref>PMID:23661706</ref> <ref>PMID:24879791</ref> <ref>PMID:25119034</ref> <ref>PMID:25121752</ref> <ref>PMID:25964352</ref> <ref>PMID:26173988</ref> <ref>PMID:26174085</ref> <ref>PMID:26508369</ref> <ref>PMID:28314590</ref> <ref>PMID:7743998</ref> <ref>PMID:7797510</ref> <ref>PMID:7797592</ref> | [https://www.uniprot.org/uniprot/CASP4_HUMAN CASP4_HUMAN] Inflammatory caspase (PubMed:7797510, PubMed:23516580, PubMed:25119034). Essential effector of NLRP3 inflammasome-dependent CASP1 activation and IL1B and IL18 secretion in response to non-canonical activators, such as UVB radiation, cholera enterotoxin subunit B and cytosolic LPS (PubMed:22246630, PubMed:26174085, PubMed:26173988, PubMed:26508369, PubMed:25964352). Independently of NLRP3 inflammasome and CASP1, promotes pyroptosis, through GSDMD cleavage and activation, and IL1A, IL18 and HMGB1 release in response to non-canonical inflammasome activators (PubMed:24879791, PubMed:25964352). Plays a crucial role in the restriction of Salmonella typhimurium replication in colonic epithelial cells during infection (PubMed:25121752). In later stages of the infection, LPS from cytosolic Salmonella triggers CASP4 activation, which ultimately results in pyroptosis of infected cells and their extrusion into the gut lumen, as well as in IL18 secretion. Pyroptosis limits bacterial replication, while cytokine secretion promotes the recruitment and activation of immune cells and triggers mucosal inflammation. Involved in LPS-induced IL6 secretion; this activity may not require caspase enzymatic activity (PubMed:26508369). Involved in cell death induced by endoplasmic reticulum stress and by treatment with cytotoxic APP peptides found Alzheimer's patient brains (PubMed:15123740, PubMed:22246630, PubMed:23661706). Activated by direct binding to LPS without the need of an upstream sensor (PubMed:25119034). Does not directly process IL1B (PubMed:7743998, PubMed:7797592, PubMed:7797510). During non-canonical inflammasome activation, cuts CGAS and may play a role in the regulation of antiviral innate immune activation (PubMed:28314590).<ref>PMID:15123740</ref> <ref>PMID:22246630</ref> <ref>PMID:23516580</ref> <ref>PMID:23661706</ref> <ref>PMID:24879791</ref> <ref>PMID:25119034</ref> <ref>PMID:25121752</ref> <ref>PMID:25964352</ref> <ref>PMID:26173988</ref> <ref>PMID:26174085</ref> <ref>PMID:26508369</ref> <ref>PMID:28314590</ref> <ref>PMID:7743998</ref> <ref>PMID:7797510</ref> <ref>PMID:7797592</ref> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The caspase-4/11-GSDMD pyroptosis axis recognizes cytosolic lipopolysaccharide for antibacterial defenses. Shigella flexneri employs an OspC3 effector to block pyroptosis by catalyzing NAD(+)-dependent arginine ADP-riboxanation of caspase-4/11. Here, we identify Ca(2+)-free calmodulin (CaM) that binds and stimulates OspC3 ADP-riboxanase activity. Crystal structures of OspC3-CaM and OspC3-caspase-4 binary complexes reveal unique CaM binding to an OspC3 N-terminal domain featuring an ADP-ribosyltransferase-like fold and specific recognition of caspase-4 by an OspC3 ankryin repeat domain, respectively. CaM-OspC3-caspase-4 ternary complex structures show that NAD(+) binding reorganizes the catalytic pocket, in which D231 and D177 activate the substrate arginine for initial ADP-ribosylation and ribosyl 2'-OH in the ADP-ribosylated arginine, respectively, for subsequent deamination. We also determine structures of unmodified and OspC3-ADP-riboxanated caspase-4. Mechanisms derived from this series of structures covering the entire process of OspC3 action are supported by biochemical analyses in vitro and functional validation in S. flexneri-infected mice. | |||
Structural mechanisms of calmodulin activation of Shigella effector OspC3 to ADP-riboxanate caspase-4/11 and block pyroptosis.,Hou Y, Zeng H, Li Z, Feng N, Meng F, Xu Y, Li L, Shao F, Ding J Nat Struct Mol Biol. 2023 Mar;30(3):261-272. doi: 10.1038/s41594-022-00888-3. , Epub 2023 Jan 9. PMID:36624349<ref>PMID:36624349</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 7wr6" style="background-color:#fffaf0;"></div> | |||
== References == | == References == | ||
<references/> | <references/> |
Latest revision as of 12:19, 17 October 2024
Crystal structure of ADP-riboxanated caspase-4 in complex with Af1521Crystal structure of ADP-riboxanated caspase-4 in complex with Af1521
Structural highlights
FunctionCASP4_HUMAN Inflammatory caspase (PubMed:7797510, PubMed:23516580, PubMed:25119034). Essential effector of NLRP3 inflammasome-dependent CASP1 activation and IL1B and IL18 secretion in response to non-canonical activators, such as UVB radiation, cholera enterotoxin subunit B and cytosolic LPS (PubMed:22246630, PubMed:26174085, PubMed:26173988, PubMed:26508369, PubMed:25964352). Independently of NLRP3 inflammasome and CASP1, promotes pyroptosis, through GSDMD cleavage and activation, and IL1A, IL18 and HMGB1 release in response to non-canonical inflammasome activators (PubMed:24879791, PubMed:25964352). Plays a crucial role in the restriction of Salmonella typhimurium replication in colonic epithelial cells during infection (PubMed:25121752). In later stages of the infection, LPS from cytosolic Salmonella triggers CASP4 activation, which ultimately results in pyroptosis of infected cells and their extrusion into the gut lumen, as well as in IL18 secretion. Pyroptosis limits bacterial replication, while cytokine secretion promotes the recruitment and activation of immune cells and triggers mucosal inflammation. Involved in LPS-induced IL6 secretion; this activity may not require caspase enzymatic activity (PubMed:26508369). Involved in cell death induced by endoplasmic reticulum stress and by treatment with cytotoxic APP peptides found Alzheimer's patient brains (PubMed:15123740, PubMed:22246630, PubMed:23661706). Activated by direct binding to LPS without the need of an upstream sensor (PubMed:25119034). Does not directly process IL1B (PubMed:7743998, PubMed:7797592, PubMed:7797510). During non-canonical inflammasome activation, cuts CGAS and may play a role in the regulation of antiviral innate immune activation (PubMed:28314590).[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] Publication Abstract from PubMedThe caspase-4/11-GSDMD pyroptosis axis recognizes cytosolic lipopolysaccharide for antibacterial defenses. Shigella flexneri employs an OspC3 effector to block pyroptosis by catalyzing NAD(+)-dependent arginine ADP-riboxanation of caspase-4/11. Here, we identify Ca(2+)-free calmodulin (CaM) that binds and stimulates OspC3 ADP-riboxanase activity. Crystal structures of OspC3-CaM and OspC3-caspase-4 binary complexes reveal unique CaM binding to an OspC3 N-terminal domain featuring an ADP-ribosyltransferase-like fold and specific recognition of caspase-4 by an OspC3 ankryin repeat domain, respectively. CaM-OspC3-caspase-4 ternary complex structures show that NAD(+) binding reorganizes the catalytic pocket, in which D231 and D177 activate the substrate arginine for initial ADP-ribosylation and ribosyl 2'-OH in the ADP-ribosylated arginine, respectively, for subsequent deamination. We also determine structures of unmodified and OspC3-ADP-riboxanated caspase-4. Mechanisms derived from this series of structures covering the entire process of OspC3 action are supported by biochemical analyses in vitro and functional validation in S. flexneri-infected mice. Structural mechanisms of calmodulin activation of Shigella effector OspC3 to ADP-riboxanate caspase-4/11 and block pyroptosis.,Hou Y, Zeng H, Li Z, Feng N, Meng F, Xu Y, Li L, Shao F, Ding J Nat Struct Mol Biol. 2023 Mar;30(3):261-272. doi: 10.1038/s41594-022-00888-3. , Epub 2023 Jan 9. PMID:36624349[16] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|