7ode: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[7ode]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7ODE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7ODE FirstGlance]. <br>
<table><tr><td colspan='2'>[[7ode]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7ODE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7ODE FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1MG:1N-METHYLGUANOSINE-5-MONOPHOSPHATE'>1MG</scene>, <scene name='pdbligand=2MA:2-METHYLADENOSINE-5-MONOPHOSPHATE'>2MA</scene>, <scene name='pdbligand=2MG:2N-METHYLGUANOSINE-5-MONOPHOSPHATE'>2MG</scene>, <scene name='pdbligand=3TD:(1S)-1,4-ANHYDRO-1-(3-METHYL-2,4-DIOXO-1,2,3,4-TETRAHYDROPYRIMIDIN-5-YL)-5-O-PHOSPHONO-D-RIBITOL'>3TD</scene>, <scene name='pdbligand=5MC:5-METHYLCYTIDINE-5-MONOPHOSPHATE'>5MC</scene>, <scene name='pdbligand=5MU:5-METHYLURIDINE+5-MONOPHOSPHATE'>5MU</scene>, <scene name='pdbligand=6MZ:N6-METHYLADENOSINE-5-MONOPHOSPHATE'>6MZ</scene>, <scene name='pdbligand=G7M:N7-METHYL-GUANOSINE-5-MONOPHOSPHATE'>G7M</scene>, <scene name='pdbligand=H2U:5,6-DIHYDROURIDINE-5-MONOPHOSPHATE'>H2U</scene>, <scene name='pdbligand=MEQ:N5-METHYLGLUTAMINE'>MEQ</scene>, <scene name='pdbligand=OMC:O2-METHYLYCYTIDINE-5-MONOPHOSPHATE'>OMC</scene>, <scene name='pdbligand=OMG:O2-METHYLGUANOSINE-5-MONOPHOSPHATE'>OMG</scene>, <scene name='pdbligand=OMU:O2-METHYLURIDINE+5-MONOPHOSPHATE'>OMU</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.84&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1MG:1N-METHYLGUANOSINE-5-MONOPHOSPHATE'>1MG</scene>, <scene name='pdbligand=2MA:2-METHYLADENOSINE-5-MONOPHOSPHATE'>2MA</scene>, <scene name='pdbligand=2MG:2N-METHYLGUANOSINE-5-MONOPHOSPHATE'>2MG</scene>, <scene name='pdbligand=3TD:(1S)-1,4-ANHYDRO-1-(3-METHYL-2,4-DIOXO-1,2,3,4-TETRAHYDROPYRIMIDIN-5-YL)-5-O-PHOSPHONO-D-RIBITOL'>3TD</scene>, <scene name='pdbligand=5MC:5-METHYLCYTIDINE-5-MONOPHOSPHATE'>5MC</scene>, <scene name='pdbligand=5MU:5-METHYLURIDINE+5-MONOPHOSPHATE'>5MU</scene>, <scene name='pdbligand=6MZ:N6-METHYLADENOSINE-5-MONOPHOSPHATE'>6MZ</scene>, <scene name='pdbligand=G7M:N7-METHYL-GUANOSINE-5-MONOPHOSPHATE'>G7M</scene>, <scene name='pdbligand=H2U:5,6-DIHYDROURIDINE-5-MONOPHOSPHATE'>H2U</scene>, <scene name='pdbligand=MEQ:N5-METHYLGLUTAMINE'>MEQ</scene>, <scene name='pdbligand=OMC:O2-METHYLYCYTIDINE-5-MONOPHOSPHATE'>OMC</scene>, <scene name='pdbligand=OMG:O2-METHYLGUANOSINE-5-MONOPHOSPHATE'>OMG</scene>, <scene name='pdbligand=OMU:O2-METHYLURIDINE+5-MONOPHOSPHATE'>OMU</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7ode FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7ode OCA], [https://pdbe.org/7ode PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7ode RCSB], [https://www.ebi.ac.uk/pdbsum/7ode PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7ode ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7ode FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7ode OCA], [https://pdbe.org/7ode PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7ode RCSB], [https://www.ebi.ac.uk/pdbsum/7ode PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7ode ProSAT]</span></td></tr>
</table>
</table>
Line 18: Line 19:
</div>
</div>
<div class="pdbe-citations 7ode" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 7ode" style="background-color:#fffaf0;"></div>
==See Also==
*[[Ribosome 3D structures|Ribosome 3D structures]]
== References ==
== References ==
<references/>
<references/>

Latest revision as of 12:00, 14 July 2024

E. coli 50S ribosome LiCl core particleE. coli 50S ribosome LiCl core particle

Structural highlights

7ode is a 10 chain structure with sequence from Escherichia coli K-12. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 2.84Å
Ligands:, , , , , , , , , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RL2_ECOLI One of the primary rRNA binding proteins. Located near the base of the L1 stalk, it is probably also mobile. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is highly controversial.[HAMAP-Rule:MF_01320_B] In the E.coli 70S ribosome in the initiation state it has been modeled to make several contacts with the 16S rRNA (forming bridge B7b, PubMed:12809609); these contacts are broken in the model with bound EF-G.[HAMAP-Rule:MF_01320_B]

Publication Abstract from PubMed

Ribosomes are complex ribonucleoprotein particles. Purified 50S ribosomes subjected to high-salt wash, removing a subset of ribosomal proteins (r-proteins), were shown as competent for in vitro assembly into functional 50S subunits. Here, we used cryo-EM to determine the structures of such LiCl core particles derived from E. coli 50S subunits. A wide range of complexes with large variations in the extent of the ordered 23S rRNA and the occupancy of r-proteins were resolved to between 2.8 A and 9 A resolution. Many of these particles showed high similarity to in vivo and in vitro assembly intermediates, supporting the inherent stability or metastability of these states. Similar to states in early ribosome assembly, the main class showed an ordered density for the particle base around the exit tunnel, with domain V and the 3'-half of domain IV disordered. In addition, smaller core particles were discovered, where either domain II or IV was unfolded. Our data support a multi-pathway in vitro disassembly process, similar but reverse to assembly. Dependencies between complex tertiary RNA structures and RNA-protein interactions were observed, where protein extensions dissociated before the globular domains. We observed the formation of a non-native RNA structure upon protein dissociation, demonstrating that r-proteins stabilize native RNA structures and prevent non-native interactions also after folding.

Structural Consequences of Deproteinating the 50S Ribosome.,Larsson DSD, Kanchugal P S, Selmer M Biomolecules. 2022 Oct 31;12(11):1605. doi: 10.3390/biom12111605. PMID:36358955[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Larsson DSD, Kanchugal P S, Selmer M. Structural Consequences of Deproteinating the 50S Ribosome. Biomolecules. 2022 Oct 31;12(11):1605. doi: 10.3390/biom12111605. PMID:36358955 doi:http://dx.doi.org/10.3390/biom12111605

7ode, resolution 2.84Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA