7l2h: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='7l2h' size='340' side='right'caption='[[7l2h]], [[Resolution|resolution]] 2.63Å' scene=''> | <StructureSection load='7l2h' size='340' side='right'caption='[[7l2h]], [[Resolution|resolution]] 2.63Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'> | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7L2H OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7L2H FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=XJ7:(2S)-1-(butanoyloxy)-3-{[(R)-hydroxy{[(1r,2R,3S,4S,5R,6S)-2,3,4,5,6-pentahydroxycyclohexyl]oxy}phosphoryl]oxy}propan-2-yl+tridecanoate'>XJ7</scene>, <scene name='pdbligand=XJD:(10R,13S)-16-amino-13-hydroxy-7,13-dioxo-8,12,14-trioxa-13lambda~5~-phosphahexadecan-10-yl+tridecanoate'>XJD</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.63Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=XJ7:(2S)-1-(butanoyloxy)-3-{[(R)-hydroxy{[(1r,2R,3S,4S,5R,6S)-2,3,4,5,6-pentahydroxycyclohexyl]oxy}phosphoryl]oxy}propan-2-yl+tridecanoate'>XJ7</scene>, <scene name='pdbligand=XJD:(10R,13S)-16-amino-13-hydroxy-7,13-dioxo-8,12,14-trioxa-13lambda~5~-phosphahexadecan-10-yl+tridecanoate'>XJD</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7l2h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7l2h OCA], [https://pdbe.org/7l2h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7l2h RCSB], [https://www.ebi.ac.uk/pdbsum/7l2h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7l2h ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7l2h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7l2h OCA], [https://pdbe.org/7l2h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7l2h RCSB], [https://www.ebi.ac.uk/pdbsum/7l2h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7l2h ProSAT]</span></td></tr> | ||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 18: | Line 17: | ||
</div> | </div> | ||
<div class="pdbe-citations 7l2h" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 7l2h" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Ion channels 3D structures|Ion channels 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
Line 23: | Line 25: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Cheng | [[Category: Cheng Y]] | ||
[[Category: Julius | [[Category: Julius D]] | ||
[[Category: Zhang | [[Category: Zhang K]] | ||
Latest revision as of 16:40, 6 November 2024
Cryo-EM structure of unliganded full-length TRPV1 at neutral pHCryo-EM structure of unliganded full-length TRPV1 at neutral pH
Structural highlights
Publication Abstract from PubMedMany transient receptor potential (TRP) channels respond to diverse stimuli and conditionally conduct small and large cations. Such functional plasticity is presumably enabled by a uniquely dynamic ion selectivity filter that is regulated by physiological agents. What is currently missing is a "photo series" of intermediate structural states that directly address this hypothesis and reveal specific mechanisms behind such dynamic channel regulation. Here, we exploit cryoelectron microscopy (cryo-EM) to visualize conformational transitions of the capsaicin receptor, TRPV1, as a model to understand how dynamic transitions of the selectivity filter in response to algogenic agents, including protons, vanilloid agonists, and peptide toxins, permit permeation by small and large organic cations. These structures also reveal mechanisms governing ligand binding substates, as well as allosteric coupling between key sites that are proximal to the selectivity filter and cytoplasmic gate. These insights suggest a general framework for understanding how TRP channels function as polymodal signal integrators. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality.,Zhang K, Julius D, Cheng Y Cell. 2021 Aug 31. pii: S0092-8674(21)00982-X. doi: 10.1016/j.cell.2021.08.012. PMID:34496225[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|