7l2h: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='7l2h' size='340' side='right'caption='[[7l2h]], [[Resolution|resolution]] 2.63&Aring;' scene=''>
<StructureSection load='7l2h' size='340' side='right'caption='[[7l2h]], [[Resolution|resolution]] 2.63&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[7l2h]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7L2H OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7L2H FirstGlance]. <br>
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7L2H OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7L2H FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=XJ7:(2S)-1-(butanoyloxy)-3-{[(R)-hydroxy{[(1r,2R,3S,4S,5R,6S)-2,3,4,5,6-pentahydroxycyclohexyl]oxy}phosphoryl]oxy}propan-2-yl+tridecanoate'>XJ7</scene>, <scene name='pdbligand=XJD:(10R,13S)-16-amino-13-hydroxy-7,13-dioxo-8,12,14-trioxa-13lambda~5~-phosphahexadecan-10-yl+tridecanoate'>XJD</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.63&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=XJ7:(2S)-1-(butanoyloxy)-3-{[(R)-hydroxy{[(1r,2R,3S,4S,5R,6S)-2,3,4,5,6-pentahydroxycyclohexyl]oxy}phosphoryl]oxy}propan-2-yl+tridecanoate'>XJ7</scene>, <scene name='pdbligand=XJD:(10R,13S)-16-amino-13-hydroxy-7,13-dioxo-8,12,14-trioxa-13lambda~5~-phosphahexadecan-10-yl+tridecanoate'>XJD</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7l2h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7l2h OCA], [https://pdbe.org/7l2h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7l2h RCSB], [https://www.ebi.ac.uk/pdbsum/7l2h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7l2h ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7l2h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7l2h OCA], [https://pdbe.org/7l2h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7l2h RCSB], [https://www.ebi.ac.uk/pdbsum/7l2h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7l2h ProSAT]</span></td></tr>
</table>
</table>
== Function ==
[[https://www.uniprot.org/uniprot/TRPV1_RAT TRPV1_RAT]] Receptor-activated non-selective calcium permeant cation channel involved in detection of noxious chemical and thermal stimuli. Seems to mediate proton influx and may be involved in intracellular acidosis in nociceptive neurons. May be involved in mediation of inflammatory pain and hyperalgesia. Sensitized by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases, which involves PKC isozymes and PCL. Activation by vanilloids, like capsaicin, and temperatures higher than 42 degrees Celsius, exhibits a time- and Ca(2+)-dependent outward rectification, followed by a long-lasting refractory state. Mild extracellular acidic pH (6.5) potentiates channel activation by noxious heat and vanilloids, whereas acidic conditions (pH <6) directly activate the channel. Can be activated by endogenous compounds, including 12-hydroperoxytetraenoic acid and bradykinin. Acts as ionotropic endocannabinoid receptor with central neuromodulatory effects. Triggers a form of long-term depression (TRPV1-LTD) mediated by the endocannabinoid anandamine in the hippocampus and nucleus accumbens by affecting AMPA receptors endocytosis.<ref>PMID:9349813</ref> <ref>PMID:10644739</ref> <ref>PMID:11140687</ref> <ref>PMID:11418861</ref> <ref>PMID:12095983</ref> <ref>PMID:12194871</ref> <ref>PMID:12808128</ref> <ref>PMID:14523239</ref> <ref>PMID:12764195</ref> <ref>PMID:14630912</ref> <ref>PMID:15173182</ref> <ref>PMID:21076423</ref> 
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 18: Line 17:
</div>
</div>
<div class="pdbe-citations 7l2h" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 7l2h" style="background-color:#fffaf0;"></div>
==See Also==
*[[Ion channels 3D structures|Ion channels 3D structures]]
== References ==
== References ==
<references/>
<references/>
Line 23: Line 25:
</StructureSection>
</StructureSection>
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Cheng, Y]]
[[Category: Cheng Y]]
[[Category: Julius, D]]
[[Category: Julius D]]
[[Category: Zhang, K]]
[[Category: Zhang K]]
[[Category: Cryo-em]]
[[Category: Full length]]
[[Category: Nanodisc]]
[[Category: Transport protein]]
[[Category: Trp channel]]

Latest revision as of 16:40, 6 November 2024

Cryo-EM structure of unliganded full-length TRPV1 at neutral pHCryo-EM structure of unliganded full-length TRPV1 at neutral pH

Structural highlights

Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 2.63Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Many transient receptor potential (TRP) channels respond to diverse stimuli and conditionally conduct small and large cations. Such functional plasticity is presumably enabled by a uniquely dynamic ion selectivity filter that is regulated by physiological agents. What is currently missing is a "photo series" of intermediate structural states that directly address this hypothesis and reveal specific mechanisms behind such dynamic channel regulation. Here, we exploit cryoelectron microscopy (cryo-EM) to visualize conformational transitions of the capsaicin receptor, TRPV1, as a model to understand how dynamic transitions of the selectivity filter in response to algogenic agents, including protons, vanilloid agonists, and peptide toxins, permit permeation by small and large organic cations. These structures also reveal mechanisms governing ligand binding substates, as well as allosteric coupling between key sites that are proximal to the selectivity filter and cytoplasmic gate. These insights suggest a general framework for understanding how TRP channels function as polymodal signal integrators.

Structural snapshots of TRPV1 reveal mechanism of polymodal functionality.,Zhang K, Julius D, Cheng Y Cell. 2021 Aug 31. pii: S0092-8674(21)00982-X. doi: 10.1016/j.cell.2021.08.012. PMID:34496225[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Zhang K, Julius D, Cheng Y. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell. 2021 Aug 31. pii: S0092-8674(21)00982-X. doi: 10.1016/j.cell.2021.08.012. PMID:34496225 doi:http://dx.doi.org/10.1016/j.cell.2021.08.012

7l2h, resolution 2.63Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA