7cjf: Difference between revisions

New page: '''Unreleased structure''' The entry 7cjf is ON HOLD Authors: Description: Category: Unreleased Structures
 
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 7cjf is ON HOLD
==Crystal structure of SARS-CoV-2 RBD in complex with a neutralizing antibody Fab==
<StructureSection load='7cjf' size='340' side='right'caption='[[7cjf]], [[Resolution|resolution]] 2.11&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[7cjf]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome_coronavirus_2 Severe acute respiratory syndrome coronavirus 2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7CJF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7CJF FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.108&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7cjf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7cjf OCA], [https://pdbe.org/7cjf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7cjf RCSB], [https://www.ebi.ac.uk/pdbsum/7cjf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7cjf ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/SPIKE_SARS2 SPIKE_SARS2] attaches the virion to the cell membrane by interacting with host receptor, initiating the infection (By similarity). Binding to human ACE2 receptor and internalization of the virus into the endosomes of the host cell induces conformational changes in the Spike glycoprotein (PubMed:32142651, PubMed:32075877, PubMed:32155444). Uses also human TMPRSS2 for priming in human lung cells which is an essential step for viral entry (PubMed:32142651). Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes.[HAMAP-Rule:MF_04099]<ref>PMID:32075877</ref> <ref>PMID:32142651</ref> <ref>PMID:32155444</ref>  mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.[HAMAP-Rule:MF_04099]  Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.[HAMAP-Rule:MF_04099]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
COVID-19 pandemic caused by SARS-CoV-2 constitutes a global public health crisis with enormous economic consequences. Monoclonal antibodies against SARS-CoV-2 can provide an important treatment option to fight COVID-19, especially for the most vulnerable populations. In this work, potent antibodies binding to SARS-CoV-2 Spike protein were identified from COVID-19 convalescent patients. Among them, P4A1 interacts directly with and covers majority of the Receptor Binding Motif of the Spike Receptor-Binding Domain, shown by high-resolution complex structure analysis. We further demonstrate the binding and neutralizing activities of P4A1 against wild type and mutant Spike proteins or pseudoviruses. P4A1 was subsequently engineered to reduce the potential risk for Antibody-Dependent Enhancement of infection and to extend its half-life. The engineered antibody exhibits an optimized pharmacokinetic and safety profile, and it results in complete viral clearance in a rhesus monkey model of COVID-19 following a single injection. These data suggest its potential against SARS-CoV-2 related diseases.


Authors:  
A SARS-CoV-2 neutralizing antibody with extensive Spike binding coverage and modified for optimal therapeutic outcomes.,Guo Y, Huang L, Zhang G, Yao Y, Zhou H, Shen S, Shen B, Li B, Li X, Zhang Q, Chen M, Chen D, Wu J, Fu D, Zeng X, Feng M, Pi C, Wang Y, Zhou X, Lu M, Li Y, Fang Y, Lu YY, Hu X, Wang S, Zhang W, Gao G, Adrian F, Wang Q, Yu F, Peng Y, Gabibov AG, Min J, Wang Y, Huang H, Stepanov A, Zhang W, Cai Y, Liu J, Yuan Z, Zhang C, Lou Z, Deng F, Zhang H, Shan C, Schweizer L, Sun K, Rao Z Nat Commun. 2021 May 11;12(1):2623. doi: 10.1038/s41467-021-22926-2. PMID:33976198<ref>PMID:33976198</ref>


Description:  
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
<div class="pdbe-citations 7cjf" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[Antibody 3D structures|Antibody 3D structures]]
*[[Spike protein 3D structures|Spike protein 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Severe acute respiratory syndrome coronavirus 2]]
[[Category: Fu D]]
[[Category: Guo Y]]
[[Category: Li X]]
[[Category: Rao Z]]
[[Category: Schweizer L]]
[[Category: Zhang G]]
[[Category: Zhang H]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA