7bt2: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of the SERCA2a in the E2.ATP state== | |||
<StructureSection load='7bt2' size='340' side='right'caption='[[7bt2]], [[Resolution|resolution]] 3.00Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7BT2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7BT2 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.0000286Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene>, <scene name='pdbligand=PCW:1,2-DIOLEOYL-SN-GLYCERO-3-PHOSPHOCHOLINE'>PCW</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7bt2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7bt2 OCA], [https://pdbe.org/7bt2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7bt2 RCSB], [https://www.ebi.ac.uk/pdbsum/7bt2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7bt2 ProSAT]</span></td></tr> | |||
</table> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Under physiological conditions, most Ca(2+)-ATPase (SERCA) molecules bind ATP before binding the Ca(2+) transported. SERCA has a high affinity for ATP even in the absence of Ca(2+), and ATP accelerates Ca(2+) binding at pH values lower than 7, where SERCA is in the E2 state with low-affinity Ca(2+)-binding sites. Here we describe the crystal structure of SERCA2a, the isoform predominant in cardiac muscle, in the E2.ATP state at 3.0-A resolution. In the crystal structure, the arrangement of the cytoplasmic domains is distinctly different from that in canonical E2. The A-domain now takes an E1 position, and the N-domain occupies exactly the same position as that in the E1.ATP.2Ca(2+) state relative to the P-domain. As a result, ATP is properly delivered to the phosphorylation site. Yet phosphoryl transfer never takes place without the filling of the two transmembrane Ca(2+)-binding sites. The present crystal structure explains what ATP binding itself does to SERCA and how nonproductive phosphorylation is prevented in E2. | |||
What ATP binding does to the Ca(2+) pump and how nonproductive phosphoryl transfer is prevented in the absence of Ca(2).,Kabashima Y, Ogawa H, Nakajima R, Toyoshima C Proc Natl Acad Sci U S A. 2020 Jul 16. pii: 2006027117. doi:, 10.1073/pnas.2006027117. PMID:32675243<ref>PMID:32675243</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[ | </div> | ||
[[Category: | <div class="pdbe-citations 7bt2" style="background-color:#fffaf0;"></div> | ||
[[Category: Kabashima | |||
[[Category: | ==See Also== | ||
[[Category: Ogawa | *[[ATPase 3D structures|ATPase 3D structures]] | ||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Kabashima Y]] | |||
[[Category: Nakajima R]] | |||
[[Category: Ogawa H]] | |||
[[Category: Toyoshima C]] |
Latest revision as of 11:37, 17 October 2024
Crystal structure of the SERCA2a in the E2.ATP stateCrystal structure of the SERCA2a in the E2.ATP state
Structural highlights
Publication Abstract from PubMedUnder physiological conditions, most Ca(2+)-ATPase (SERCA) molecules bind ATP before binding the Ca(2+) transported. SERCA has a high affinity for ATP even in the absence of Ca(2+), and ATP accelerates Ca(2+) binding at pH values lower than 7, where SERCA is in the E2 state with low-affinity Ca(2+)-binding sites. Here we describe the crystal structure of SERCA2a, the isoform predominant in cardiac muscle, in the E2.ATP state at 3.0-A resolution. In the crystal structure, the arrangement of the cytoplasmic domains is distinctly different from that in canonical E2. The A-domain now takes an E1 position, and the N-domain occupies exactly the same position as that in the E1.ATP.2Ca(2+) state relative to the P-domain. As a result, ATP is properly delivered to the phosphorylation site. Yet phosphoryl transfer never takes place without the filling of the two transmembrane Ca(2+)-binding sites. The present crystal structure explains what ATP binding itself does to SERCA and how nonproductive phosphorylation is prevented in E2. What ATP binding does to the Ca(2+) pump and how nonproductive phosphoryl transfer is prevented in the absence of Ca(2).,Kabashima Y, Ogawa H, Nakajima R, Toyoshima C Proc Natl Acad Sci U S A. 2020 Jul 16. pii: 2006027117. doi:, 10.1073/pnas.2006027117. PMID:32675243[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|