|
|
(One intermediate revision by the same user not shown) |
Line 3: |
Line 3: |
| <StructureSection load='5rg5' size='340' side='right'caption='[[5rg5]], [[Resolution|resolution]] 1.62Å' scene=''> | | <StructureSection load='5rg5' size='340' side='right'caption='[[5rg5]], [[Resolution|resolution]] 1.62Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
| <table><tr><td colspan='2'>[[5rg5]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Theau Theau]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5RG5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5RG5 FirstGlance]. <br> | | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5RG5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5RG5 FirstGlance]. <br> |
| </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.62Å</td></tr> |
| <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Endo-1,4-beta-xylanase Endo-1,4-beta-xylanase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.8 3.2.1.8] </span></td></tr> | | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5rg5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5rg5 OCA], [https://pdbe.org/5rg5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5rg5 RCSB], [https://www.ebi.ac.uk/pdbsum/5rg5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5rg5 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5rg5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5rg5 OCA], [https://pdbe.org/5rg5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5rg5 RCSB], [https://www.ebi.ac.uk/pdbsum/5rg5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5rg5 ProSAT]</span></td></tr> |
| </table> | | </table> |
| <div style="background-color:#fffaf0;">
| |
| == Publication Abstract from PubMed ==
| |
| The creation of artificial enzymes is a key objective of computational protein design. Although de novo enzymes have been successfully designed, these exhibit low catalytic efficiencies, requiring directed evolution to improve activity. Here, we use room-temperature X-ray crystallography to study changes in the conformational ensemble during evolution of the designed Kemp eliminase HG3 (kcat/KM 146 M(-1)s(-1)). We observe that catalytic residues are increasingly rigidified, the active site becomes better pre-organized, and its entrance is widened. Based on these observations, we engineer HG4, an efficient biocatalyst (kcat/KM 103,000 M(-1)s(-1)) containing key first and second-shell mutations found during evolution. HG4 structures reveal that its active site is pre-organized and rigidified for efficient catalysis. Our results show how directed evolution circumvents challenges inherent to enzyme design by shifting conformational ensembles to favor catalytically-productive sub-states, and suggest improvements to the design methodology that incorporate ensemble modeling of crystallographic data.
| |
|
| |
|
| Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico.,Broom A, Rakotoharisoa RV, Thompson MC, Zarifi N, Nguyen E, Mukhametzhanov N, Liu L, Fraser JS, Chica RA Nat Commun. 2020 Sep 23;11(1):4808. doi: 10.1038/s41467-020-18619-x. PMID:32968058<ref>PMID:32968058</ref>
| | ==See Also== |
| | | *[[Kemp eliminase|Kemp eliminase]] |
| From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| |
| </div>
| |
| <div class="pdbe-citations 5rg5" style="background-color:#fffaf0;"></div>
| |
| == References == | |
| <references/>
| |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| [[Category: Endo-1,4-beta-xylanase]]
| |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
| [[Category: Theau]]
| | [[Category: Broom A]] |
| [[Category: Broom, A]] | | [[Category: Chica RA]] |
| [[Category: Chica, R A]] | | [[Category: Fraser JS]] |
| [[Category: Fraser, J S]] | | [[Category: Rakotoharisoa RV]] |
| [[Category: Rakotoharisoa, R V]] | | [[Category: Thompson MC]] |
| [[Category: Thompson, M C]] | |
| [[Category: Hydrolase]]
| |