6cql: Difference between revisions

No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:


==Crystal structure of a TCR==
==Crystal structure of F24 TCR -DR11-RQ13 peptide complex==
<StructureSection load='6cql' size='340' side='right' caption='[[6cql]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
<StructureSection load='6cql' size='340' side='right'caption='[[6cql]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[6cql]] is a 5 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CQL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6CQL FirstGlance]. <br>
<table><tr><td colspan='2'>[[6cql]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/HIV-1_M:B_HXB2R HIV-1 M:B_HXB2R] and [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CQL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6CQL FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4&#8491;</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HLA-DRA, HLA-DRA1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), HLA-DRB1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6cql FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6cql OCA], [http://pdbe.org/6cql PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6cql RCSB], [http://www.ebi.ac.uk/pdbsum/6cql PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6cql ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6cql FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6cql OCA], [https://pdbe.org/6cql PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6cql RCSB], [https://www.ebi.ac.uk/pdbsum/6cql PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6cql ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/DRB1_HUMAN DRB1_HUMAN] Giant cell arteritis;NON RARE IN EUROPE: Rheumatoid arthritis;Narcolepsy type 1;Pediatric multiple sclerosis;Sarcoidosis;Systemic lupus erythematosus;Systemic-onset juvenile idiopathic arthritis;Autoimmune pulmonary alveolar proteinosis;Limited systemic sclerosis;Limited cutaneous systemic sclerosis;Diffuse cutaneous systemic sclerosis;NON RARE IN EUROPE: Multiple sclerosis;Follicular lymphoma;Bullous pemphigoid;NON RARE IN EUROPE: Celiac disease;Narcolepsy type 2. In populations of European descent, allele DRB1*01:03 is associated with increased susceptibility to Crohn disease and colonic ulcerative colitis. Decreased heterozygosity in individuals with colonic ulcerative colitis suggests that it acts as a recessive risk allele.<ref>PMID:25559196</ref>  Disease susceptibility is associated with variants affecting the gene represented in this entry. Alleles DRB1*04:02, DRB1*11:01 and DRB1*12:01 are associated with sarcoidosis. Allele DRB1*04:02 is significantly associated with specific sarcodosis phenotypes such as eye, parotid and salivary gland involvement.<ref>PMID:14508706</ref>  Disease susceptibility is associated with variants affecting the gene represented in this entry. In populations of European descent, allele DRB1*15:01 has the strongest association with multiple sclerosis among all HLA class II alleles. Additional risk is associated with the strongly linked alleles DRB1*03:01 and DQB1*02:01 as well as with allele DRB1*13:03 (PubMed:21833088). It is postulated that bacterial or viral infection triggers the autoimmune MS. Microbial peptides having low affinity crossreactivity to MBP autoantigen, may stimulate autoreactive T cells via molecular mimicry and initiate the autoimmune inflammation (PubMed:19303388).<ref>PMID:19303388</ref> <ref>PMID:21833088</ref>  Allele DRB1*15:01 is associated with increased susceptibility to Goodpasture syndrome. Can present a self-peptide derived from COL4A3 (GWISLWKGFSF) on TCR (TRAV19 biased) in pathogenic CD4-positive T-helper 1 and T-helper 17 cells, triggering autoimmune inflammation.<ref>PMID:28467828</ref>  Disease susceptibility is associated with variants affecting the gene represented in this entry. Alleles DRB1*04:01; DRB1*04:04; DRB1*04:05; DRB1*04:08; DRB1*10:01; DRB1*01:01 and DRB1*01:02 are associated with increased susceptibility to rheumatoid arthritis, where affected individuals have antibodies to cyclic citrullinated peptide (anti-CCP-positive rheumatoid arthritis). Variations at position 40 in the peptide-binding cleft of these alleles explain most of the association to rheumatoid arthritis risk.<ref>PMID:22286218</ref>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/DRA_HUMAN DRA_HUMAN]] Binds peptides derived from antigens that access the endocytic route of antigen presenting cells (APC) and presents them on the cell surface for recognition by the CD4 T-cells. The peptide binding cleft accommodates peptides of 10-30 residues. The peptides presented by MHC class II molecules are generated mostly by degradation of proteins that access the endocytic route, where they are processed by lysosomal proteases and other hydrolases. Exogenous antigens that have been endocytosed by the APC are thus readily available for presentation via MHC II molecules, and for this reason this antigen presentation pathway is usually referred to as exogenous. As membrane proteins on their way to degradation in lysosomes as part of their normal turn-over are also contained in the endosomal/lysosomal compartments, exogenous antigens must compete with those derived from endogenous components. Autophagy is also a source of endogenous peptides, autophagosomes constitutively fuse with MHC class II loading compartments. In addition to APCs, other cells of the gastrointestinal tract, such as epithelial cells, express MHC class II molecules and CD74 and act as APCs, which is an unusual trait of the GI tract. To produce a MHC class II molecule that presents an antigen, three MHC class II molecules (heterodimers of an alpha and a beta chain) associate with a CD74 trimer in the ER to form a heterononamer. Soon after the entry of this complex into the endosomal/lysosomal system where antigen processing occurs, CD74 undergoes a sequential degradation by various proteases, including CTSS and CTSL, leaving a small fragment termed CLIP (class-II-associated invariant chain peptide). The removal of CLIP is facilitated by HLA-DM via direct binding to the alpha-beta-CLIP complex so that CLIP is released. HLA-DM stabilizes MHC class II molecules until primary high affinity antigenic peptides are bound. The MHC II molecule bound to a peptide is then transported to the cell membrane surface. In B-cells, the interaction between HLA-DM and MHC class II molecules is regulated by HLA-DO. Primary dendritic cells (DCs) also to express HLA-DO. Lysosomal miroenvironment has been implicated in the regulation of antigen loading into MHC II molecules, increased acidification produces increased proteolysis and efficient peptide loading. [[http://www.uniprot.org/uniprot/GAG_HV1H2 GAG_HV1H2]] Matrix protein p17 targets Gag and Gag-Pol polyproteins to the plasma membrane via a multipartite membrane binding signal, that includes its myristoylated N-terminus. Also mediates nuclear localization of the preintegration complex. Implicated in the release from host cell mediated by Vpu. Capsid protein p24 forms the conical core of the virus that encapsulates the genomic RNA-nucleocapsid complex.  Nucleocapsid protein p7 encapsulates and protects viral dimeric unspliced (genomic) RNA. Binds these RNAs through its zinc fingers. p6-gag plays a role in budding of the assembled particle by interacting with the host class E VPS proteins TSG101 and PDCD6IP/AIP1 (By similarity). [[http://www.uniprot.org/uniprot/2B1B_HUMAN 2B1B_HUMAN]] Binds peptides derived from antigens that access the endocytic route of antigen presenting cells (APC) and presents them on the cell surface for recognition by the CD4 T-cells. The peptide binding cleft accommodates peptides of 10-30 residues. The peptides presented by MHC class II molecules are generated mostly by degradation of proteins that access the endocytic route, where they are processed by lysosomal proteases and other hydrolases. Exogenous antigens that have been endocytosed by the APC are thus readily available for presentation via MHC II molecules, and for this reason this antigen presentation pathway is usually referred to as exogenous. As membrane proteins on their way to degradation in lysosomes as part of their normal turn-over are also contained in the endosomal/lysosomal compartments, exogenous antigens must compete with those derived from endogenous components. Autophagy is also a source of endogenous peptides, autophagosomes constitutively fuse with MHC class II loading compartments. In addition to APCs, other cells of the gastrointestinal tract, such as epithelial cells, express MHC class II molecules and CD74 and act as APCs, which is an unusual trait of the GI tract. To produce a MHC class II molecule that presents an antigen, three MHC class II molecules (heterodimers of an alpha and a beta chain) associate with a CD74 trimer in the ER to form a heterononamer. Soon after the entry of this complex into the endosomal/lysosomal system where antigen processing occurs, CD74 undergoes a sequential degradation by various proteases, including CTSS and CTSL, leaving a small fragment termed CLIP (class-II-associated invariant chain peptide). The removal of CLIP is facilitated by HLA-DM via direct binding to the alpha-beta-CLIP complex so that CLIP is released. HLA-DM stabilizes MHC class II molecules until primary high affinity antigenic peptides are bound. The MHC II molecule bound to a peptide is then transported to the cell membrane surface. In B-cells, the interaction between HLA-DM and MHC class II molecules is regulated by HLA-DO. Primary dendritic cells (DCs) also to express HLA-DO. Lysosomal microenvironment has been implicated in the regulation of antigen loading into MHC II molecules, increased acidification produces increased proteolysis and efficient peptide loading.
[https://www.uniprot.org/uniprot/DRB1_HUMAN DRB1_HUMAN] A beta chain of antigen-presenting major histocompatibility complex class II (MHCII) molecule. In complex with the alpha chain HLA-DRA, displays antigenic peptides on professional antigen presenting cells (APCs) for recognition by alpha-beta T cell receptor (TCR) on HLA-DRB1-restricted CD4-positive T cells. This guides antigen-specific T-helper effector functions, both antibody-mediated immune response and macrophage activation, to ultimately eliminate the infectious agents and transformed cells (PubMed:15265931, PubMed:16148104, PubMed:22327072, PubMed:27591323, PubMed:29884618, PubMed:31495665, PubMed:8642306). Typically presents extracellular peptide antigens of 10 to 30 amino acids that arise from proteolysis of endocytosed antigens in lysosomes (PubMed:8145819). In the tumor microenvironment, presents antigenic peptides that are primarily generated in tumor-resident APCs likely via phagocytosis of apoptotic tumor cells or macropinocytosis of secreted tumor proteins (PubMed:31495665). Presents peptides derived from intracellular proteins that are trapped in autolysosomes after macroautophagy, a mechanism especially relevant for T cell selection in the thymus and central immune tolerance (PubMed:17182262, PubMed:23783831). The selection of the immunodominant epitopes follows two processing modes: 'bind first, cut/trim later' for pathogen-derived antigenic peptides and 'cut first, bind later' for autoantigens/self-peptides (PubMed:25413013). The anchor residue at position 1 of the peptide N-terminus, usually a large hydrophobic residue, is essential for high affinity interaction with MHCII molecules (PubMed:8145819).<ref>PMID:15265931</ref> <ref>PMID:17182262</ref> <ref>PMID:22327072</ref> <ref>PMID:23783831</ref> <ref>PMID:25413013</ref> <ref>PMID:27591323</ref> <ref>PMID:29884618</ref> <ref>PMID:31495665</ref> <ref>PMID:8145819</ref> <ref>PMID:8642306</ref>  Allele DRB1*01:01: Displays an immunodominant epitope derived from Bacillus anthracis pagA/protective antigen, PA (KLPLYISNPNYKVNVYAVT), to both naive and PA-specific memory CD4-positive T cells (PubMed:22327072). Presents immunodominant HIV-1 gag peptide (FRDYVDRFYKTLRAEQASQE) on infected dendritic cells for recognition by TRAV24-TRBV2 TCR on CD4-positive T cells and controls viral load (PubMed:29884618). May present to T-helper 1 cells several HRV-16 epitopes derived from capsid proteins VP1 (PRFSLPFLSIASAYYMFYDG) and VP2 (PHQFINLRSNNSATLIVPYV), contributing to viral clearance (PubMed:27591323). Displays commonly recognized peptides derived from IAV external protein HA (PKYVKQNTLKLAT and SNGNFIAPEYAYKIVK) and from internal proteins M, NP and PB1, with M-derived epitope (GLIYNRMGAVTTEV) being the most immunogenic (PubMed:25413013, PubMed:32668259, PubMed:8145819, PubMed:9075930). Presents a self-peptide derived from COL4A3 (GWISLWKGFSF) to TCR (TRAV14 biased) on CD4-positive, FOXP3-positive regulatory T cells and mediates immune tolerance to self (PubMed:28467828). May present peptides derived from oncofetal trophoblast glycoprotein TPBG 5T4, known to be recognized by both T-helper 1 and regulatory T cells (PubMed:31619516). Displays with low affinity a self-peptide derived from MBP (VHFFKNIVTPRTP) (PubMed:9075930).<ref>PMID:22327072</ref> <ref>PMID:25413013</ref> <ref>PMID:27591323</ref> <ref>PMID:28467828</ref> <ref>PMID:29884618</ref> <ref>PMID:31619516</ref> <ref>PMID:32668259</ref> <ref>PMID:8145819</ref> <ref>PMID:9075930</ref>  Allele DRB1*03:01: May present to T-helper 1 cells an HRV-16 epitope derived from capsid protein VP2 (NEKQPSDDNWLNFDGTLLGN), contributing to viral clearance (PubMed:27591323). Displays self-peptides derived from retinal SAG (NRERRGIALDGKIKHE) and thyroid TG (LSSVVVDPSIRHFDV) (PubMed:25413013). Presents viral epitopes derived from HHV-6B gH/U48 and U85 antigens to polyfunctional CD4-positive T cells with cytotoxic activity implicated in control of HHV-6B infection (PubMed:31020640). Presents several immunogenic epitopes derived from C. tetani neurotoxin tetX, playing a role in immune recognition and long-term protection (PubMed:19830726).<ref>PMID:19830726</ref> <ref>PMID:25413013</ref> <ref>PMID:27591323</ref> <ref>PMID:31020640</ref>  Allele DRB1*04:01: Presents an immunodominant bacterial epitope derived from M. tuberculosis esxB/culture filtrate antigen CFP-10 (EISTNIRQAGVQYSR), eliciting CD4-positive T cell effector functions such as IFNG production and cytotoxic activity (PubMed:15265931). May present to T-helper 1 cells an HRV-16 epitope derived from capsid protein VP2 (NEKQPSDDNWLNFDGTLLGN), contributing to viral clearance (PubMed:27591323). Presents tumor epitopes derived from melanoma-associated TYR antigen (QNILLSNAPLGPQFP and DYSYLQDSDPDSFQD), triggering CD4-positive T cell effector functions such as GMCSF production (PubMed:8642306). Displays preferentially citrullinated self-peptides derived from VIM (GVYATR/citSSAVR and SAVRAR/citSSVPGVR) and ACAN (VVLLVATEGR/ CitVRVNSAYQDK) (PubMed:24190431). Displays self-peptides derived from COL2A1 (PubMed:9354468).<ref>PMID:15265931</ref> <ref>PMID:24190431</ref> <ref>PMID:27591323</ref> <ref>PMID:8642306</ref> <ref>PMID:9354468</ref>  Allele DRB1*04:02: Displays native or citrullinated self-peptides derived from VIM.<ref>PMID:24190431</ref>  Allele DRB1*04:04: May present to T-helper 1 cells several HRV-16 epitopes derived from capsid proteins VP1 (HIVMQYMYVPPGAPIPTTRN) and VP2 (RGDSTITSQDVANAVVGYGV), contributing to viral clearance (PubMed:27591323). Displays preferentially citrullinated self-peptides derived from VIM (SAVRAR/citSSVPGVR) (PubMed:24190431).<ref>PMID:24190431</ref> <ref>PMID:27591323</ref>  Allele DRB1*04:05: May present to T-helper 1 cells an immunogenic epitope derived from tumor-associated antigen WT1 (KRYFKLSHLQMHSRKH), likely providing for effective antitumor immunity in a wide range of solid and hematological malignancies.<ref>PMID:19120973</ref>  Allele DRB1*05:01: Presents an immunodominant HIV-1 gag peptide (FRDYVDRFYKTLRAEQASQE) on infected dendritic cells for recognition by TRAV24-TRBV2 TCR on CD4-positive T cells and controls viral load.<ref>PMID:29884618</ref>  Allele DRB1*07:01: Upon EBV infection, presents latent antigen EBNA2 peptide (PRSPTVFYNIPPMPLPPSQL) to CD4-positive T cells, driving oligoclonal expansion and selection of a dominant virus-specific memory T cell subset with cytotoxic potential to directly eliminate virus-infected B cells (PubMed:31308093). May present to T-helper 1 cells several HRV-16 epitopes derived from capsid proteins VP1 (PRFSLPFLSIASAYYMFYDG) and VP2 (VPYVNAVPMDSMVRHNNWSL), contributing to viral clearance (PubMed:27591323). In the context of tumor immunesurveillance, may present to T-helper 1 cells an immunogenic epitope derived from tumor-associated antigen WT1 (MTEYKLVVVGAVGVGKSALTIQLI), likely providing for effective antitumor immunity in a wide range of solid and hematological malignancies (PubMed:22929521). In metastatic epithelial tumors, presents to intratumoral CD4-positive T cells a KRAS neoantigen (MTEYKLVVVGAVGVGKSALTIQLI) carrying G12V hotspot driver mutation and may mediate tumor regression (PubMed:30282837).<ref>PMID:22929521</ref> <ref>PMID:27591323</ref> <ref>PMID:30282837</ref> <ref>PMID:31308093</ref>  Allele DRB1*11:01: Displays an immunodominant HIV-1 gag peptide (FRDYVDRFYKTLRAEQASQE) on infected dendritic cells for recognition by TRAV24-TRBV2 TCR on CD4-positive T cells and controls viral load (PubMed:29884618). May present to T-helper 1 cells an HRV-16 epitope derived from capsid protein VP2 (SDRIIQITRGDSTITSQDVA), contributing to viral clearance (PubMed:27591323). Presents several immunogenic epitopes derived from C. tetani neurotoxin tetX, playing a role in immune recognition and longterm protection (PubMed:19830726). In the context of tumor immunesurveillance, may present tumor-derived neoantigens to CD4-positive T cells and trigger anti-tumor helper functions (PubMed:31495665).<ref>PMID:19830726</ref> <ref>PMID:27591323</ref> <ref>PMID:29884618</ref> <ref>PMID:31495665</ref>  Allele DRB1*13:01: Presents viral epitopes derived from HHV-6B antigens to polyfunctional CD4-positive T cells implicated in control of HHV-6B infection.<ref>PMID:31020640</ref>  Allele DRB1*15:01: May present to T-helper 1 cells an HRV-16 epitope derived from capsid protein VP2 (SNNSATLIVPYVNAVPMDSM), contributing to viral clearance (PubMed:27591323). Displays a self-peptide derived from MBP (ENPVVHFFKNIVTPR) (PubMed:25413013, PubMed:9782128). May present to T-helper 1 cells an immunogenic epitope derived from tumor-associated antigen WT1 (KRYFKLSHLQMHSRKH), likely providing for effective antitumor immunity in a wide range of solid and hematological malignancies.<ref>PMID:19120973</ref> <ref>PMID:27591323</ref> <ref>PMID:9782128</ref>  Allele DRB1*15:02: Displays an immunodominant HIV-1 gag peptide (FRDYVDRFYKTLRAEQASQE) on infected dendritic cells for recognition by TRAV24-TRBV2 TCR on CD4-positive T cells and controls viral load (PubMed:29884618). May present to T-helper 1 cells an immunogenic epitope derived from tumor-associated antigen WT1 (KRYFKLSHLQMHSRKH), likely providing for effective antitumor immunity in a wide range of solid and hematological malignancies (PubMed:19120973).<ref>PMID:19120973</ref> <ref>PMID:29884618</ref>  (Microbial infection) Acts as a receptor for Epstein-Barr virus on lymphocytes.<ref>PMID:11864610</ref> <ref>PMID:9151859</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Rare individuals, termed HIV controllers, spontaneously control HIV infection by mounting efficient T cell responses against the virus. Protective CD4(+) T cell responses from HIV controllers involve high-affinity public T cell receptors (TCRs) recognizing an immunodominant capsid epitope (Gag293) presented by a remarkably broad array of human leukocyte antigen (HLA) class II molecules. Here, we determine the structures of a prototypical public TCR bound to HLA-DR1, HLA-DR11, and HLA-DR15 molecules presenting the Gag293 epitope. TCR recognition was driven by contacts with the Gag293 epitope, a feature that underpinned the extensive HLA cross-restriction. These high-affinity TCRs promoted mature immunological synapse formation and cytotoxic capacity in both CD4(+) and CD8(+) T cells. The public TCRs suppressed HIV replication in multiple genetic backgrounds ex vivo, emphasizing the functional advantage conferred by broad HLA class II cross-restriction.
 
CD4(+) T cell-mediated HLA class II cross-restriction in HIV controllers.,Galperin M, Farenc C, Mukhopadhyay M, Jayasinghe D, Decroos A, Benati D, Tan LL, Ciacchi L, Reid HH, Rossjohn J, Chakrabarti LA, Gras S Sci Immunol. 2018 Jun 8;3(24). pii: 3/24/eaat0687. doi:, 10.1126/sciimmunol.aat0687. PMID:29884618<ref>PMID:29884618</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6cql" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[MHC 3D structures|MHC 3D structures]]
*[[MHC II 3D structures|MHC II 3D structures]]
*[[T-cell receptor 3D structures|T-cell receptor 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: HIV-1 M:B_HXB2R]]
[[Category: Farenc, C]]
[[Category: Homo sapiens]]
[[Category: Gras, S]]
[[Category: Large Structures]]
[[Category: Rossjohn, J]]
[[Category: Farenc C]]
[[Category: Immune receptor]]
[[Category: Gras S]]
[[Category: Immune system]]
[[Category: Rossjohn J]]
[[Category: Tcr]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA