6fmt: Difference between revisions
New page: '''Unreleased structure''' The entry 6fmt is ON HOLD Authors: Description: Category: Unreleased Structures |
No edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==IMISX-EP of Hg-BacA Soaking SAD== | ||
<StructureSection load='6fmt' size='340' side='right'caption='[[6fmt]], [[Resolution|resolution]] 3.00Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[6fmt]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6FMT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6FMT FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HG:MERCURY+(II)+ION'>HG</scene>, <scene name='pdbligand=OLC:(2R)-2,3-DIHYDROXYPROPYL+(9Z)-OCTADEC-9-ENOATE'>OLC</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6fmt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6fmt OCA], [https://pdbe.org/6fmt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6fmt RCSB], [https://www.ebi.ac.uk/pdbsum/6fmt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6fmt ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/UPPP_ECOLI UPPP_ECOLI] Catalyzes the dephosphorylation of undecaprenyl diphosphate (UPP). Confers resistance to bacitracin.<ref>PMID:15778224</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
De novo membrane protein structure determination is often limited by the availability of large crystals and the difficulties in obtaining accurate diffraction data for experimental phasing. Here we present a method that combines in situ serial crystallography with de novo phasing for fast, efficient membrane protein structure determination. The method enables systematic diffraction screening and rapid data collection from hundreds of microcrystals in in meso crystallization wells without the need for direct crystal harvesting. The requisite data quality for experimental phasing is achieved by accumulating diffraction signals from isomorphous crystals identified post-data collection. The method works in all experimental phasing scenarios and is particularly attractive with fragile, weakly diffracting microcrystals. The automated serial data collection approach can be readily adopted at most microfocus macromolecular crystallography beamlines. | |||
In situ serial crystallography for rapid de novo membrane protein structure determination.,Huang CY, Olieric V, Howe N, Warshamanage R, Weinert T, Panepucci E, Vogeley L, Basu S, Diederichs K, Caffrey M, Wang M Commun Biol. 2018 Aug 27;1:124. doi: 10.1038/s42003-018-0123-6. eCollection 2018. PMID:30272004<ref>PMID:30272004</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 6fmt" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Escherichia coli K-12]] | |||
[[Category: Large Structures]] | |||
[[Category: Basu S]] | |||
[[Category: Caffrey M]] | |||
[[Category: Diederichs K]] | |||
[[Category: Howe N]] | |||
[[Category: Huang C-Y]] | |||
[[Category: Olieric V]] | |||
[[Category: Panepucci E]] | |||
[[Category: Vogeley L]] | |||
[[Category: Wang M]] | |||
[[Category: Warshamanage R]] | |||
[[Category: Weinert T]] |
Latest revision as of 09:05, 19 June 2024
IMISX-EP of Hg-BacA Soaking SADIMISX-EP of Hg-BacA Soaking SAD
Structural highlights
FunctionUPPP_ECOLI Catalyzes the dephosphorylation of undecaprenyl diphosphate (UPP). Confers resistance to bacitracin.[1] Publication Abstract from PubMedDe novo membrane protein structure determination is often limited by the availability of large crystals and the difficulties in obtaining accurate diffraction data for experimental phasing. Here we present a method that combines in situ serial crystallography with de novo phasing for fast, efficient membrane protein structure determination. The method enables systematic diffraction screening and rapid data collection from hundreds of microcrystals in in meso crystallization wells without the need for direct crystal harvesting. The requisite data quality for experimental phasing is achieved by accumulating diffraction signals from isomorphous crystals identified post-data collection. The method works in all experimental phasing scenarios and is particularly attractive with fragile, weakly diffracting microcrystals. The automated serial data collection approach can be readily adopted at most microfocus macromolecular crystallography beamlines. In situ serial crystallography for rapid de novo membrane protein structure determination.,Huang CY, Olieric V, Howe N, Warshamanage R, Weinert T, Panepucci E, Vogeley L, Basu S, Diederichs K, Caffrey M, Wang M Commun Biol. 2018 Aug 27;1:124. doi: 10.1038/s42003-018-0123-6. eCollection 2018. PMID:30272004[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|