4rdd: Difference between revisions
New page: '''Unreleased structure''' The entry 4rdd is ON HOLD Authors: Zhang, Z.Y., Yu, Z.H., He, R., Zhang, R.Y. Description: Co-crystal structure of SHP2 in complex with Cefsulodin |
No edit summary |
||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The entry | ==Co-crystal structure of SHP2 in complex with a Cefsulodin derivative== | ||
<StructureSection load='4rdd' size='340' side='right'caption='[[4rdd]], [[Resolution|resolution]] 1.60Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4rdd]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4RDD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4RDD FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.601Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3LU:1-({(2R)-4-CARBOXY-2-[(R)-CARBOXY{[(2R)-2-PHENYL-2-SULFOACETYL]AMINO}METHYL]-3,6-DIHYDRO-2H-1,3-THIAZIN-5-YL}METHYL)PYRIDINIUM'>3LU</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4rdd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4rdd OCA], [https://pdbe.org/4rdd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4rdd RCSB], [https://www.ebi.ac.uk/pdbsum/4rdd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4rdd ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/PTN11_HUMAN PTN11_HUMAN] Defects in PTPN11 are the cause of LEOPARD syndrome type 1 (LEOPARD1) [MIM:[https://omim.org/entry/151100 151100]. It is an autosomal dominant disorder allelic with Noonan syndrome. The acronym LEOPARD stands for lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormalities of genitalia, retardation of growth, and deafness.<ref>PMID:12058348</ref> <ref>PMID:14961557</ref> <ref>PMID:15389709</ref> <ref>PMID:15520399</ref> <ref>PMID:15121796</ref> <ref>PMID:15690106</ref> <ref>PMID:16679933</ref> Defects in PTPN11 are the cause of Noonan syndrome type 1 (NS1) [MIM:[https://omim.org/entry/163950 163950]. Noonan syndrome (NS) is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. Some patients with Noonan syndrome type 1 develop multiple giant cell lesions of the jaw or other bony or soft tissues, which are classified as pigmented villomoduolar synovitis (PVNS) when occurring in the jaw or joints. Note=Mutations in PTPN11 account for more than 50% of the cases. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS1 inheritance is autosomal dominant.<ref>PMID:11704759</ref> <ref>PMID:11992261</ref> <ref>PMID:12325025</ref> <ref>PMID:12161469</ref> <ref>PMID:12529711</ref> <ref>PMID:12634870</ref> <ref>PMID:12739139</ref> <ref>PMID:12960218</ref> <ref>PMID:12717436</ref> <ref>PMID:15384080</ref> <ref>PMID:15948193</ref> <ref>PMID:19020799</ref> Defects in PTPN11 are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:[https://omim.org/entry/607785 607785]. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor.<ref>PMID:12717436</ref> Defects in PTPN11 are a cause of metachondromatosis (MC) [MIM:[https://omim.org/entry/156250 156250]. It is a skeletal disorder with radiologic fetarures of both multiple exostoses and Ollier disease, characterized by the presence of multiple enchondromas and osteochondroma-like lesions.<ref>PMID:20577567</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/PTN11_HUMAN PTN11_HUMAN] Acts downstream of various receptor and cytoplasmic protein tyrosine kinases to participate in the signal transduction from the cell surface to the nucleus. Dephosphorylates ROCK2 at Tyr-722 resulting in stimulatation of its RhoA binding activity.<ref>PMID:10655584</ref> <ref>PMID:18829466</ref> <ref>PMID:18559669</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Protein tyrosine phosphatases (PTPs) are potential therapeutic targets for many diseases. Unfortunately, despite considerable drug discovery efforts devoted to PTPs, obtaining selective and cell permeable PTP inhibitors remains highly challenging. We describe a strategy to explore the existing drug space for previously unknown PTP inhibitory activities. This led to the discovery of cefsulodin as an inhibitor of SHP2, an oncogenic phosphatase in the PTP family. Crystal structure analysis of SHP2 interaction with cefsulodin identified sulfophenyl acetic amide (SPAA) as a novel phosphotyrosine (pTyr) mimetic. A structure-guided and SPAA fragment-based focused library approach produced several potent and selective SHP2 inhibitors. Notably, these inhibitors blocked SHP2-mediated signaling events and proliferation in several cancer cell lines. Thus, SPAA may serve as a new platform for developing chemical probes for other PTPs. | |||
Exploring the Existing Drug Space for Novel pTyr Mimetic and SHP2 Inhibitors.,He R, Yu ZH, Zhang RY, Wu L, Gunawan AM, Lane BS, Shim JS, Zeng LF, He Y, Chen L, Wells CD, Liu JO, Zhang ZY ACS Med Chem Lett. 2015 Jun 8;6(7):782-6. doi: 10.1021/acsmedchemlett.5b00118., eCollection 2015 Jul 9. PMID:26191366<ref>PMID:26191366</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 4rdd" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Tyrosine phosphatase 3D structures|Tyrosine phosphatase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: He R]] | |||
[[Category: Yu ZH]] | |||
[[Category: Zhang RY]] | |||
[[Category: Zhang ZY]] |
Latest revision as of 12:50, 25 December 2024
Co-crystal structure of SHP2 in complex with a Cefsulodin derivativeCo-crystal structure of SHP2 in complex with a Cefsulodin derivative
Structural highlights
DiseasePTN11_HUMAN Defects in PTPN11 are the cause of LEOPARD syndrome type 1 (LEOPARD1) [MIM:151100. It is an autosomal dominant disorder allelic with Noonan syndrome. The acronym LEOPARD stands for lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormalities of genitalia, retardation of growth, and deafness.[1] [2] [3] [4] [5] [6] [7] Defects in PTPN11 are the cause of Noonan syndrome type 1 (NS1) [MIM:163950. Noonan syndrome (NS) is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. Some patients with Noonan syndrome type 1 develop multiple giant cell lesions of the jaw or other bony or soft tissues, which are classified as pigmented villomoduolar synovitis (PVNS) when occurring in the jaw or joints. Note=Mutations in PTPN11 account for more than 50% of the cases. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS1 inheritance is autosomal dominant.[8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] Defects in PTPN11 are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:607785. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor.[20] Defects in PTPN11 are a cause of metachondromatosis (MC) [MIM:156250. It is a skeletal disorder with radiologic fetarures of both multiple exostoses and Ollier disease, characterized by the presence of multiple enchondromas and osteochondroma-like lesions.[21] FunctionPTN11_HUMAN Acts downstream of various receptor and cytoplasmic protein tyrosine kinases to participate in the signal transduction from the cell surface to the nucleus. Dephosphorylates ROCK2 at Tyr-722 resulting in stimulatation of its RhoA binding activity.[22] [23] [24] Publication Abstract from PubMedProtein tyrosine phosphatases (PTPs) are potential therapeutic targets for many diseases. Unfortunately, despite considerable drug discovery efforts devoted to PTPs, obtaining selective and cell permeable PTP inhibitors remains highly challenging. We describe a strategy to explore the existing drug space for previously unknown PTP inhibitory activities. This led to the discovery of cefsulodin as an inhibitor of SHP2, an oncogenic phosphatase in the PTP family. Crystal structure analysis of SHP2 interaction with cefsulodin identified sulfophenyl acetic amide (SPAA) as a novel phosphotyrosine (pTyr) mimetic. A structure-guided and SPAA fragment-based focused library approach produced several potent and selective SHP2 inhibitors. Notably, these inhibitors blocked SHP2-mediated signaling events and proliferation in several cancer cell lines. Thus, SPAA may serve as a new platform for developing chemical probes for other PTPs. Exploring the Existing Drug Space for Novel pTyr Mimetic and SHP2 Inhibitors.,He R, Yu ZH, Zhang RY, Wu L, Gunawan AM, Lane BS, Shim JS, Zeng LF, He Y, Chen L, Wells CD, Liu JO, Zhang ZY ACS Med Chem Lett. 2015 Jun 8;6(7):782-6. doi: 10.1021/acsmedchemlett.5b00118., eCollection 2015 Jul 9. PMID:26191366[25] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|