4cww: Difference between revisions
New page: '''Unreleased structure''' The entry 4cww is ON HOLD until sometime in the future Authors: Li, H., Poulos, T.L. Description: Structure of bovine endothelial nitric oxide synthase heme ... |
No edit summary |
||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Structure of bovine endothelial nitric oxide synthase heme domain in complex with 4-METHYL-6-(((3R,4R)-4-((5-(4-METHYLPYRIDIN-2-YL)PENTYL) OXY)PYRROLIDIN-3-YL)METHYL)PYRIDIN-2-AMINE== | |||
<StructureSection load='4cww' size='340' side='right'caption='[[4cww]], [[Resolution|resolution]] 2.16Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4cww]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4CWW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4CWW FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.16Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CAS:S-(DIMETHYLARSENIC)CYSTEINE'>CAS</scene>, <scene name='pdbligand=H4B:5,6,7,8-TETRAHYDROBIOPTERIN'>H4B</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=HW9:4-METHYL-6-{[(3R,4R)-4-{[5-(4-METHYLPYRIDIN-2-YL)PENTYL]OXY}PYRROLIDIN-3-YL]METHYL}PYRIDIN-2-AMINE'>HW9</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4cww FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4cww OCA], [https://pdbe.org/4cww PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4cww RCSB], [https://www.ebi.ac.uk/pdbsum/4cww PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4cww ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/NOS3_BOVIN NOS3_BOVIN] Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway. NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets. | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Many pyrrolidine-based inhibitors highly selective for neuronal nitric oxide synthase (nNOS) over endothelial NOS (eNOS) exhibit dramatically different binding modes. In some cases, the inhibitor binds in a 180 degrees flipped orientation in nNOS relative to eNOS. From the several crystal structures we have determined, we know that isoform selectivity correlates with the rotamer position of a conserved tyrosine residue that H-bonds with a heme propionate. In nNOS, this Tyr more readily adopts the out-rotamer conformation, while in eNOS, the Tyr tends to remain fixed in the original in-rotamer conformation. In the out-rotamer conformation, inhibitors are able to form better H-bonds with the protein and heme, thus increasing inhibitor potency. A segment of polypeptide that runs along the surface near the conserved Tyr has long been thought to be the reason for the difference in Tyr mobility. Although this segment is usually disordered in both eNOS and nNOS, sequence comparisons and modeling from a few structures show that this segment is structured quite differently in eNOS and nNOS. In this study, we have probed the importance of this surface segment near the Tyr by making a few mutants in the region followed by crystal structure determinations. In addition, because the segment near the conserved Tyr is highly ordered in iNOS, we also determined the structure of an iNOS-inhibitor complex. This new structure provides further insight into the critical role that mobility plays in isoform selectivity. | |||
The Mobility of a Conserved Tyrosine Residue Controls Isoform-Dependent Enzyme-Inhibitor Interactions in Nitric Oxide Synthases.,Li H, Jamal J, Delker S, Plaza C, Ji H, Jing Q, Huang H, Kang S, Silverman RB, Poulos TL Biochemistry. 2014 Aug 11. PMID:25089924<ref>PMID:25089924</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 4cww" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Nitric Oxide Synthase 3D structures|Nitric Oxide Synthase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Bos taurus]] | |||
[[Category: Large Structures]] | |||
[[Category: Li H]] | |||
[[Category: Poulos TL]] |
Latest revision as of 11:24, 23 October 2024
Structure of bovine endothelial nitric oxide synthase heme domain in complex with 4-METHYL-6-(((3R,4R)-4-((5-(4-METHYLPYRIDIN-2-YL)PENTYL) OXY)PYRROLIDIN-3-YL)METHYL)PYRIDIN-2-AMINEStructure of bovine endothelial nitric oxide synthase heme domain in complex with 4-METHYL-6-(((3R,4R)-4-((5-(4-METHYLPYRIDIN-2-YL)PENTYL) OXY)PYRROLIDIN-3-YL)METHYL)PYRIDIN-2-AMINE
Structural highlights
FunctionNOS3_BOVIN Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway. NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets. Publication Abstract from PubMedMany pyrrolidine-based inhibitors highly selective for neuronal nitric oxide synthase (nNOS) over endothelial NOS (eNOS) exhibit dramatically different binding modes. In some cases, the inhibitor binds in a 180 degrees flipped orientation in nNOS relative to eNOS. From the several crystal structures we have determined, we know that isoform selectivity correlates with the rotamer position of a conserved tyrosine residue that H-bonds with a heme propionate. In nNOS, this Tyr more readily adopts the out-rotamer conformation, while in eNOS, the Tyr tends to remain fixed in the original in-rotamer conformation. In the out-rotamer conformation, inhibitors are able to form better H-bonds with the protein and heme, thus increasing inhibitor potency. A segment of polypeptide that runs along the surface near the conserved Tyr has long been thought to be the reason for the difference in Tyr mobility. Although this segment is usually disordered in both eNOS and nNOS, sequence comparisons and modeling from a few structures show that this segment is structured quite differently in eNOS and nNOS. In this study, we have probed the importance of this surface segment near the Tyr by making a few mutants in the region followed by crystal structure determinations. In addition, because the segment near the conserved Tyr is highly ordered in iNOS, we also determined the structure of an iNOS-inhibitor complex. This new structure provides further insight into the critical role that mobility plays in isoform selectivity. The Mobility of a Conserved Tyrosine Residue Controls Isoform-Dependent Enzyme-Inhibitor Interactions in Nitric Oxide Synthases.,Li H, Jamal J, Delker S, Plaza C, Ji H, Jing Q, Huang H, Kang S, Silverman RB, Poulos TL Biochemistry. 2014 Aug 11. PMID:25089924[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|