3wlb: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==HLA-A24 in complex with HIV-1 Nef126-10(8T10F)== | ==HLA-A24 in complex with HIV-1 Nef126-10(8T10F)== | ||
<StructureSection load='3wlb' size='340' side='right' caption='[[3wlb]], [[Resolution|resolution]] 2.00Å' scene=''> | <StructureSection load='3wlb' size='340' side='right'caption='[[3wlb]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3wlb]] is a 3 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3wlb]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Human_immunodeficiency_virus_1 Human immunodeficiency virus 1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3WLB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3WLB FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3wlb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wlb OCA], [https://pdbe.org/3wlb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3wlb RCSB], [https://www.ebi.ac.uk/pdbsum/3wlb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3wlb ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/NEF_HV1AN NEF_HV1AN] Factor of infectivity and pathogenicity, required for optimal virus replication. Alters numerous pathways of T-lymphocyte function and down-regulates immunity surface molecules in order to evade host defense and increase viral infectivity. Alters the functionality of other immunity cells, like dendritic cells, monocytes/macrophages and NK cells. In infected CD4(+) T-lymphocytes, down-regulates the surface MHC-I, mature MHC-II, CD4, CD28, CCR5 and CXCR4 molecules. Mediates internalization and degradation of host CD4 through the interaction of with the cytoplasmic tail of CD4, the recruitment of AP-2 (clathrin adapter protein complex 2), internalization through clathrin coated pits, and subsequent transport to endosomes and lysosomes for degradation. Diverts host MHC-I molecules to the trans-Golgi network-associated endosomal compartments by an endocytic pathway to finally target them for degradation. MHC-I down-regulation may involve AP-1 (clathrin adapter protein complex 1) or possibly Src family kinase-ZAP70/Syk-PI3K cascade recruited by PACS2. In consequence infected cells are masked for immune recognition by cytotoxic T-lymphocytes. Decreasing the number of immune receptors also prevents reinfection by more HIV particles (superinfection). Down-regulates host SERINC3 and SERINC5 thereby excluding these proteins from the viral particles. Virion infectivity is drastically higher when SERINC3 or SERINC5 are excluded from the viral envelope, because these host antiviral proteins impair the membrane fusion event necessary for subsequent virion penetration. Bypasses host T-cell signaling by inducing a transcriptional program nearly identical to that of anti-CD3 cell activation. Interaction with TCR-zeta chain up-regulates the Fas ligand (FasL). Increasing surface FasL molecules and decreasing surface MHC-I molecules on infected CD4(+) cells send attacking cytotoxic CD8+ T-lymphocytes into apoptosis. Plays a role in optimizing the host cell environment for viral replication without causing cell death by apoptosis. Protects the infected cells from apoptosis in order to keep them alive until the next virus generation is ready to strike. Inhibits the Fas and TNFR-mediated death signals by blocking MAP3K5/ASK1. Decreases the half-life of TP53, protecting the infected cell against p53-mediated apoptosis. Inhibits the apoptotic signals regulated by the Bcl-2 family proteins through the formation of a Nef/PI3-kinase/PAK2 complex that leads to activation of PAK2 and induces phosphorylation of host BAD. Extracellular Nef protein targets CD4(+) T-lymphocytes for apoptosis by interacting with CXCR4 surface receptors. | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 21: | Line 18: | ||
</div> | </div> | ||
<div class="pdbe-citations 3wlb" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 3wlb" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Beta-2 microglobulin 3D structures|Beta-2 microglobulin 3D structures]] | |||
*[[MHC 3D structures|MHC 3D structures]] | |||
*[[MHC I 3D structures|MHC I 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Human immunodeficiency virus 1]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Fukai S]] | ||
[[Category: | [[Category: Han C]] | ||
[[Category: | [[Category: Iwamoto A]] | ||
[[Category: | [[Category: Shimizu A]] | ||
[[Category: | [[Category: Yamagata A]] | ||