4hg4: Difference between revisions

m Protected "4hg4" [edit=sysop:move=sysop]
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 4hg4 is ON HOLD
==Crystal structure of Fab 2G1 in complex with a H2N2 influenza virus hemagglutinin==
<StructureSection load='4hg4' size='340' side='right'caption='[[4hg4]], [[Resolution|resolution]] 3.20&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[4hg4]] is a 36 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Influenza_A_virus_(A/Japan/305+/1957(H2N2)) Influenza A virus (A/Japan/305+/1957(H2N2))]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4HG4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4HG4 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.2&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4hg4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4hg4 OCA], [https://pdbe.org/4hg4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4hg4 RCSB], [https://www.ebi.ac.uk/pdbsum/4hg4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4hg4 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/HEMA_I57A0 HEMA_I57A0] Binds to sialic acid-containing receptors on the cell surface, bringing about the attachment of the virus particle to the cell. This attachment induces virion internalization of about two third of the virus particles through clathrin-dependent endocytosis and about one third through a clathrin- and caveolin-independent pathway. Plays a major role in the determination of host range restriction and virulence. Class I viral fusion protein. Responsible for penetration of the virus into the cell cytoplasm by mediating the fusion of the membrane of the endocytosed virus particle with the endosomal membrane. Low pH in endosomes induces an irreversible conformational change in HA2, releasing the fusion hydrophobic peptide. Several trimers are required to form a competent fusion pore.<ref>PMID:2271610</ref>  Binds to sialic acid-containing receptors on the cell surface, bringing about the attachment of the virus particle to the cell. This attachment induces virion internalization either through clathrin-dependent endocytosis or through clathrin- and caveolin-independent pathway. Plays a major role in the determination of host range restriction and virulence. Class I viral fusion protein. Responsible for penetration of the virus into the cell cytoplasm by mediating the fusion of the membrane of the endocytosed virus particle with the endosomal membrane. Low pH in endosomes induces an irreversible conformational change in HA2, releasing the fusion hydrophobic peptide. Several trimers are required to form a competent fusion pore.[HAMAP-Rule:MF_04072]
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Influenza virus hemagglutinin (HA) mediates receptor binding and viral entry during influenza infection. The development of receptor analogs as viral-entry blockers has not been successful, which suggests that sialic acid may not be an ideal scaffold to obtain broad, potent HA inhibitors. Here, we report crystal structures of Fab fragments from three human antibodies that neutralize the 1957 pandemic H2N2 influenza virus in complex with H2 HA. All three antibodies use an aromatic residue to plug a conserved cavity in the HA receptor-binding site. Each antibody interacts with the absolutely conserved HA1 Trp153 at the cavity base through pi-pi stacking with the signature Phe54 of two VH1-69-encoded antibodies or a tyrosine from HCDR3 in the other antibody. This highly conserved interaction can be used as a starting point to design inhibitors targeting this conserved hydrophobic pocket in influenza viruses.


Authors: Xu, R., Wilson, I.A.
A recurring motif for antibody recognition of the receptor-binding site of influenza hemagglutinin.,Xu R, Krause JC, McBride R, Paulson JC, Crowe JE Jr, Wilson IA Nat Struct Mol Biol. 2013 Mar;20(3):363-70. doi: 10.1038/nsmb.2500. Epub 2013 Feb, 10. PMID:23396351<ref>PMID:23396351</ref>


Description: Crystal structure of Fab 2G1 in complex with a H2N2 influenza virus hemagglutinin
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4hg4" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[Hemagglutinin 3D structures|Hemagglutinin 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Wilson IA]]
[[Category: Xu R]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA