2lu5: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Structure and chemical shifts of Cu(I),Zn(II) superoxide dismutase by solid-state NMR== | |||
<StructureSection load='2lu5' size='340' side='right'caption='[[2lu5]]' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2lu5]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LU5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2LU5 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solid-state NMR, 19 models</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2lu5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2lu5 OCA], [https://pdbe.org/2lu5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2lu5 RCSB], [https://www.ebi.ac.uk/pdbsum/2lu5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2lu5 ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/SODC_HUMAN SODC_HUMAN] Defects in SOD1 are the cause of amyotrophic lateral sclerosis type 1 (ALS1) [MIM:[https://omim.org/entry/105400 105400]. ALS1 is a familial form of amyotrophic lateral sclerosis, a neurodegenerative disorder affecting upper and lower motor neurons and resulting in fatal paralysis. Sensory abnormalities are absent. Death usually occurs within 2 to 5 years. The etiology of amyotrophic lateral sclerosis is likely to be multifactorial, involving both genetic and environmental factors. The disease is inherited in 5-10% of cases leading to familial forms.<ref>PMID:12963370</ref> <ref>PMID:19741096</ref> <ref>PMID:8528216</ref> <ref>PMID:8682505</ref> <ref>PMID:9541385</ref> <ref>PMID:12754496</ref> <ref>PMID:15056757</ref> <ref>PMID:18378676</ref> [:]<ref>PMID:8446170</ref> <ref>PMID:8351519</ref> <ref>PMID:8179602</ref> <ref>PMID:7980516</ref> <ref>PMID:8069312</ref> <ref>PMID:7951252</ref> <ref>PMID:7881433</ref> <ref>PMID:7836951</ref> <ref>PMID:7997024</ref> <ref>PMID:7870076</ref> <ref>PMID:7887412</ref> <ref>PMID:7795609</ref> <ref>PMID:7655468</ref> <ref>PMID:7655469</ref> <ref>PMID:7655471</ref> <ref>PMID:7700376</ref> <ref>PMID:7647793</ref> <ref>PMID:7501156</ref> <ref>PMID:7496169</ref> <ref>PMID:8938700</ref> <ref>PMID:8907321</ref> <ref>PMID:8990014</ref> <ref>PMID:9101297</ref> <ref>PMID:9455977</ref> <ref>PMID:10732812</ref> <ref>PMID:9131652</ref> <ref>PMID:10400992</ref> <ref>PMID:10430435</ref> <ref>PMID:11535232</ref> <ref>PMID:11369193</ref> <ref>PMID:12402272</ref> <ref>PMID:12145308</ref> <ref>PMID:14506936</ref> <ref>PMID:18552350</ref> <ref>PMID:18301754</ref> <ref>PMID:21247266</ref> <ref>PMID:21220647</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/SODC_HUMAN SODC_HUMAN] Destroys radicals which are normally produced within the cells and which are toxic to biological systems. | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with (1)H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of (15)N and (13)C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu(+) (diamagnetic) or Cu(2+) (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to (1)H-(1)H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a Gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable. | |||
Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR.,Knight MJ, Pell AJ, Bertini I, Felli IC, Gonnelli L, Pierattelli R, Herrmann T, Emsley L, Pintacuda G Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11095-100. Epub 2012 Jun 21. PMID:22723345<ref>PMID:22723345</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2lu5" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
[[ | *[[Superoxide dismutase 3D structures|Superoxide dismutase 3D structures]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Bertini | [[Category: Bertini I]] | ||
[[Category: Emsley | [[Category: Emsley L]] | ||
[[Category: Felli | [[Category: Felli IC]] | ||
[[Category: Gonnelli | [[Category: Gonnelli L]] | ||
[[Category: Herrmann | [[Category: Herrmann T]] | ||
[[Category: Knight | [[Category: Knight MJ]] | ||
[[Category: Pell | [[Category: Pell AJ]] | ||
[[Category: Pierattelli | [[Category: Pierattelli R]] | ||
[[Category: Pintacuda | [[Category: Pintacuda G]] | ||
Latest revision as of 12:17, 6 November 2024
Structure and chemical shifts of Cu(I),Zn(II) superoxide dismutase by solid-state NMRStructure and chemical shifts of Cu(I),Zn(II) superoxide dismutase by solid-state NMR
Structural highlights
DiseaseSODC_HUMAN Defects in SOD1 are the cause of amyotrophic lateral sclerosis type 1 (ALS1) [MIM:105400. ALS1 is a familial form of amyotrophic lateral sclerosis, a neurodegenerative disorder affecting upper and lower motor neurons and resulting in fatal paralysis. Sensory abnormalities are absent. Death usually occurs within 2 to 5 years. The etiology of amyotrophic lateral sclerosis is likely to be multifactorial, involving both genetic and environmental factors. The disease is inherited in 5-10% of cases leading to familial forms.[1] [2] [3] [4] [5] [6] [7] [8] [:][9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] FunctionSODC_HUMAN Destroys radicals which are normally produced within the cells and which are toxic to biological systems. Publication Abstract from PubMedWe introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with (1)H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of (15)N and (13)C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu(+) (diamagnetic) or Cu(2+) (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to (1)H-(1)H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a Gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR.,Knight MJ, Pell AJ, Bertini I, Felli IC, Gonnelli L, Pierattelli R, Herrmann T, Emsley L, Pintacuda G Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11095-100. Epub 2012 Jun 21. PMID:22723345[46] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|