4ff9: Difference between revisions
New page: '''Unreleased structure''' The entry 4ff9 is ON HOLD Authors: Auclair, J.R. Description: Crystal Structure of cysteinylated WT SOD1. |
No edit summary Tag: Manual revert |
||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==Crystal Structure of cysteinylated WT SOD1.== | ||
<StructureSection load='4ff9' size='340' side='right'caption='[[4ff9]], [[Resolution|resolution]] 2.50Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4ff9]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4FF9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4FF9 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5003Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=CYS:CYSTEINE'>CYS</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ff9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ff9 OCA], [https://pdbe.org/4ff9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ff9 RCSB], [https://www.ebi.ac.uk/pdbsum/4ff9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ff9 ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/SODC_HUMAN SODC_HUMAN] Defects in SOD1 are the cause of amyotrophic lateral sclerosis type 1 (ALS1) [MIM:[https://omim.org/entry/105400 105400]. ALS1 is a familial form of amyotrophic lateral sclerosis, a neurodegenerative disorder affecting upper and lower motor neurons and resulting in fatal paralysis. Sensory abnormalities are absent. Death usually occurs within 2 to 5 years. The etiology of amyotrophic lateral sclerosis is likely to be multifactorial, involving both genetic and environmental factors. The disease is inherited in 5-10% of cases leading to familial forms.<ref>PMID:12963370</ref> <ref>PMID:19741096</ref> <ref>PMID:8528216</ref> <ref>PMID:8682505</ref> <ref>PMID:9541385</ref> <ref>PMID:12754496</ref> <ref>PMID:15056757</ref> <ref>PMID:18378676</ref> [:]<ref>PMID:8446170</ref> <ref>PMID:8351519</ref> <ref>PMID:8179602</ref> <ref>PMID:7980516</ref> <ref>PMID:8069312</ref> <ref>PMID:7951252</ref> <ref>PMID:7881433</ref> <ref>PMID:7836951</ref> <ref>PMID:7997024</ref> <ref>PMID:7870076</ref> <ref>PMID:7887412</ref> <ref>PMID:7795609</ref> <ref>PMID:7655468</ref> <ref>PMID:7655469</ref> <ref>PMID:7655471</ref> <ref>PMID:7700376</ref> <ref>PMID:7647793</ref> <ref>PMID:7501156</ref> <ref>PMID:7496169</ref> <ref>PMID:8938700</ref> <ref>PMID:8907321</ref> <ref>PMID:8990014</ref> <ref>PMID:9101297</ref> <ref>PMID:9455977</ref> <ref>PMID:10732812</ref> <ref>PMID:9131652</ref> <ref>PMID:10400992</ref> <ref>PMID:10430435</ref> <ref>PMID:11535232</ref> <ref>PMID:11369193</ref> <ref>PMID:12402272</ref> <ref>PMID:12145308</ref> <ref>PMID:14506936</ref> <ref>PMID:18552350</ref> <ref>PMID:18301754</ref> <ref>PMID:21247266</ref> <ref>PMID:21220647</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/SODC_HUMAN SODC_HUMAN] Destroys radicals which are normally produced within the cells and which are toxic to biological systems. | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The metalloenzyme Cu/Zn-superoxide dismutase (SOD1) catalyzes the reduction of superoxide anions into molecular oxygen and hydrogen peroxide. Hydrogen peroxide can oxidize SOD1, resulting in aberrant protein conformational changes, disruption of SOD1 function, and DNA damage. Cells may have evolved mechanisms of regulation that prevent such oxidation. We observed that cysteinylation of cysteine 111 (Cys111) of SOD1 prevents oxidation by peroxide (DOI 10.1021/bi4006122 ). In this article, we characterize cysteinylated SOD1 using differential scanning fluorometry and X-ray crystallography. The stoichiometry of binding was one cysteine per SOD1 dimer, and there does not appear to be free volume for a second cysteine without disrupting the dimer interface. Much of the three-dimensional structure of SOD1 is unaffected by cysteinylation. However, local conformational changes are observed in the cysteinylated monomer that include changes in conformation of the electrostatic loop (loop VII; residues 133-144) and the dimer interface (loop VI; residues 102-115). In addition, our data shows how cysteinylation precludes oxidation of cysteine 111 and suggests possible cross-talk between the dimer interface and the electrostatic loop. | |||
Structural Consequences of Cysteinylation of Cu/Zn-Superoxide Dismutase.,Auclair JR, Brodkin HR, D'Aquino JA, Petsko GA, Ringe D, Agar JN Biochemistry. 2013 Aug 26. PMID:23919400<ref>PMID:23919400</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 4ff9" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Superoxide dismutase 3D structures|Superoxide dismutase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Agar JN]] | |||
[[Category: Auclair JR]] | |||
[[Category: Brodkin HR]] | |||
[[Category: D'Aquino JA]] | |||
[[Category: Petsko GA]] | |||
[[Category: Ringe D]] |
Latest revision as of 09:57, 27 November 2024
Crystal Structure of cysteinylated WT SOD1.Crystal Structure of cysteinylated WT SOD1.
Structural highlights
DiseaseSODC_HUMAN Defects in SOD1 are the cause of amyotrophic lateral sclerosis type 1 (ALS1) [MIM:105400. ALS1 is a familial form of amyotrophic lateral sclerosis, a neurodegenerative disorder affecting upper and lower motor neurons and resulting in fatal paralysis. Sensory abnormalities are absent. Death usually occurs within 2 to 5 years. The etiology of amyotrophic lateral sclerosis is likely to be multifactorial, involving both genetic and environmental factors. The disease is inherited in 5-10% of cases leading to familial forms.[1] [2] [3] [4] [5] [6] [7] [8] [:][9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] FunctionSODC_HUMAN Destroys radicals which are normally produced within the cells and which are toxic to biological systems. Publication Abstract from PubMedThe metalloenzyme Cu/Zn-superoxide dismutase (SOD1) catalyzes the reduction of superoxide anions into molecular oxygen and hydrogen peroxide. Hydrogen peroxide can oxidize SOD1, resulting in aberrant protein conformational changes, disruption of SOD1 function, and DNA damage. Cells may have evolved mechanisms of regulation that prevent such oxidation. We observed that cysteinylation of cysteine 111 (Cys111) of SOD1 prevents oxidation by peroxide (DOI 10.1021/bi4006122 ). In this article, we characterize cysteinylated SOD1 using differential scanning fluorometry and X-ray crystallography. The stoichiometry of binding was one cysteine per SOD1 dimer, and there does not appear to be free volume for a second cysteine without disrupting the dimer interface. Much of the three-dimensional structure of SOD1 is unaffected by cysteinylation. However, local conformational changes are observed in the cysteinylated monomer that include changes in conformation of the electrostatic loop (loop VII; residues 133-144) and the dimer interface (loop VI; residues 102-115). In addition, our data shows how cysteinylation precludes oxidation of cysteine 111 and suggests possible cross-talk between the dimer interface and the electrostatic loop. Structural Consequences of Cysteinylation of Cu/Zn-Superoxide Dismutase.,Auclair JR, Brodkin HR, D'Aquino JA, Petsko GA, Ringe D, Agar JN Biochemistry. 2013 Aug 26. PMID:23919400[46] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|