3vrr: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='3vrr' size='340' side='right'caption='[[3vrr]], [[Resolution|resolution]] 2.00Å' scene=''> | <StructureSection load='3vrr' size='340' side='right'caption='[[3vrr]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3vrr]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[3vrr]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3VRR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3VRR FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=PTR:O-PHOSPHOTYROSINE'>PTR</scene></td></tr> | |||
<tr id=' | |||
< | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3vrr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3vrr OCA], [https://pdbe.org/3vrr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3vrr RCSB], [https://www.ebi.ac.uk/pdbsum/3vrr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3vrr ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3vrr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3vrr OCA], [https://pdbe.org/3vrr PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3vrr RCSB], [https://www.ebi.ac.uk/pdbsum/3vrr PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3vrr ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
[https://www.uniprot.org/uniprot/EGFR_HUMAN EGFR_HUMAN] Defects in EGFR are associated with lung cancer (LNCR) [MIM:[https://omim.org/entry/211980 211980]. LNCR is a common malignancy affecting tissues of the lung. The most common form of lung cancer is non-small cell lung cancer (NSCLC) that can be divided into 3 major histologic subtypes: squamous cell carcinoma, adenocarcinoma, and large cell lung cancer. NSCLC is often diagnosed at an advanced stage and has a poor prognosis. | |||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/EGFR_HUMAN EGFR_HUMAN] Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses. Known ligands include EGF, TGFA/TGF-alpha, amphiregulin, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF. Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules. May also activate the NF-kappa-B signaling cascade. Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling. Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin.<ref>PMID:7657591</ref> <ref>PMID:11602604</ref> <ref>PMID:12873986</ref> <ref>PMID:10805725</ref> <ref>PMID:11116146</ref> <ref>PMID:11483589</ref> <ref>PMID:17115032</ref> <ref>PMID:21258366</ref> <ref>PMID:12297050</ref> <ref>PMID:12620237</ref> <ref>PMID:15374980</ref> <ref>PMID:19560417</ref> <ref>PMID:20837704</ref> Isoform 2 may act as an antagonist of EGF action.<ref>PMID:7657591</ref> <ref>PMID:11602604</ref> <ref>PMID:12873986</ref> <ref>PMID:10805725</ref> <ref>PMID:11116146</ref> <ref>PMID:11483589</ref> <ref>PMID:17115032</ref> <ref>PMID:21258366</ref> <ref>PMID:12297050</ref> <ref>PMID:12620237</ref> <ref>PMID:15374980</ref> <ref>PMID:19560417</ref> <ref>PMID:20837704</ref> | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 28: | Line 25: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Isozaki Y]] | |||
[[Category: Isozaki | [[Category: Nakagawa A]] | ||
[[Category: Nakagawa | [[Category: Suzuki M]] | ||
[[Category: Suzuki | [[Category: Takeshita K]] | ||
[[Category: Takeshita | [[Category: Tezuka T]] | ||
[[Category: Tezuka | [[Category: Yamamoto T]] | ||
[[Category: Yamamoto | [[Category: Yamanashi Y]] | ||
[[Category: Yamanashi | [[Category: Yamashita E]] | ||
[[Category: Yamashita | |||
Latest revision as of 12:48, 30 October 2024
Crystal structure of the tyrosine kinase binding domain of Cbl-c (PL mutant) in complex with phospho-EGFR peptideCrystal structure of the tyrosine kinase binding domain of Cbl-c (PL mutant) in complex with phospho-EGFR peptide
Structural highlights
DiseaseEGFR_HUMAN Defects in EGFR are associated with lung cancer (LNCR) [MIM:211980. LNCR is a common malignancy affecting tissues of the lung. The most common form of lung cancer is non-small cell lung cancer (NSCLC) that can be divided into 3 major histologic subtypes: squamous cell carcinoma, adenocarcinoma, and large cell lung cancer. NSCLC is often diagnosed at an advanced stage and has a poor prognosis. FunctionEGFR_HUMAN Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses. Known ligands include EGF, TGFA/TGF-alpha, amphiregulin, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF. Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules. May also activate the NF-kappa-B signaling cascade. Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling. Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] Isoform 2 may act as an antagonist of EGF action.[14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] Publication Abstract from PubMedThrough their ubiquitin ligase activity, Cbl-family proteins suppress signalling mediated by protein-tyrosine kinases (PTKs), but can also function as adaptor proteins to positively regulate signalling. The tyrosine kinase binding (TKB) domain of this family is critical for binding with tyrosine-phosphorylated target proteins. Here, we analysed the crystal structure of the TKB domain of Cbl-c/Cbl-3 (Cbl-c TKB), which is a distinct member of the mammalian Cbl-family. In comparison with Cbl TKB, Cbl-c TKB showed restricted structural flexibility upon phosphopeptide binding. A mutation in Cbl-c TKB augmenting this flexibility enhanced its binding to target phosphoproteins. These results suggest that proteins, post-translational modifications or mutations that alter structural flexibility of the TKB domain of Cbl-family proteins could regulate their binding to target phosphoproteins and thereby, affect PTK-mediated signalling. Structural flexibility regulates phosphopeptide-binding activity of the tyrosine kinase binding domain of Cbl-c.,Takeshita K, Tezuka T, Isozaki Y, Yamashita E, Suzuki M, Kim M, Yamanashi Y, Yamamoto T, Nakagawa A J Biochem. 2012 Nov;152(5):487-95. doi: 10.1093/jb/mvs085. Epub 2012 Aug 9. PMID:22888118[27] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|