3qem: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:


==Crystal structure of amino terminal domains of the NMDA receptor subunit GluN1 and GluN2B in complex with Ro 25-6981==
==Crystal structure of amino terminal domains of the NMDA receptor subunit GluN1 and GluN2B in complex with Ro 25-6981==
<StructureSection load='3qem' size='340' side='right' caption='[[3qem]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
<StructureSection load='3qem' size='340' side='right'caption='[[3qem]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3qem]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/African_clawed_frog African clawed frog] and [http://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3QEM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3QEM FirstGlance]. <br>
<table><tr><td colspan='2'>[[3qem]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus] and [https://en.wikipedia.org/wiki/Xenopus_laevis Xenopus laevis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3QEM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3QEM FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=QEM:4-[(1R,2S)-3-(4-BENZYLPIPERIDIN-1-YL)-1-HYDROXY-2-METHYLPROPYL]PHENOL'>QEM</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.003&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3jpw|3jpw]], [[3qek|3qek]], [[3qel|3qel]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=QEM:4-[(1R,2S)-3-(4-BENZYLPIPERIDIN-1-YL)-1-HYDROXY-2-METHYLPROPYL]PHENOL'>QEM</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">grin1, NR1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog]), Grin2b ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Buffalo rat])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3qem FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3qem OCA], [https://pdbe.org/3qem PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3qem RCSB], [https://www.ebi.ac.uk/pdbsum/3qem PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3qem ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3qem FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3qem OCA], [http://pdbe.org/3qem PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3qem RCSB], [http://www.ebi.ac.uk/pdbsum/3qem PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3qem ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/NMDE2_RAT NMDE2_RAT]] NMDA receptor subtype of glutamate-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Mediated by glycine. In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. Its phosphorylation at Ser-1303 by DAPK1 enhances synaptic NMDA receptor channel activity inducing injurious Ca2+ influx through them, resulting in an irreversible neuronal death (By similarity).  
[https://www.uniprot.org/uniprot/NMDZ1_XENLA NMDZ1_XENLA] Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:16214956, PubMed:19524674, PubMed:21677647, PubMed:25008524, PubMed:26912815, PubMed:27135925, Ref.11, PubMed:28232581). Sensitivity to glutamate and channel kinetics depend on the subunit composition (Probable).<ref>PMID:16214956</ref> <ref>PMID:19524674</ref> <ref>PMID:21677647</ref> <ref>PMID:25008524</ref> <ref>PMID:26912815</ref> <ref>PMID:27135925</ref> <ref>PMID:28232581</ref> [PDB:5IOV]
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 22: Line 21:


==See Also==
==See Also==
*[[Ionotropic Glutamate Receptors|Ionotropic Glutamate Receptors]]
*[[Glutamate receptor 3D structures|Glutamate receptor 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: African clawed frog]]
[[Category: Large Structures]]
[[Category: Buffalo rat]]
[[Category: Rattus norvegicus]]
[[Category: Furukawa, H]]
[[Category: Xenopus laevis]]
[[Category: Karakas, E]]
[[Category: Furukawa H]]
[[Category: Simorowski, N]]
[[Category: Karakas E]]
[[Category: Allosteric modulation]]
[[Category: Simorowski N]]
[[Category: Extracellular]]
[[Category: Ion channel]]
[[Category: N-glycosylation]]
[[Category: Nmda receptor]]
[[Category: Phenylethanolamine]]
[[Category: Transmembrane]]
[[Category: Transport protein]]

Latest revision as of 09:06, 17 October 2024

Crystal structure of amino terminal domains of the NMDA receptor subunit GluN1 and GluN2B in complex with Ro 25-6981Crystal structure of amino terminal domains of the NMDA receptor subunit GluN1 and GluN2B in complex with Ro 25-6981

Structural highlights

3qem is a 4 chain structure with sequence from Rattus norvegicus and Xenopus laevis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.003Å
Ligands:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

NMDZ1_XENLA Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:16214956, PubMed:19524674, PubMed:21677647, PubMed:25008524, PubMed:26912815, PubMed:27135925, Ref.11, PubMed:28232581). Sensitivity to glutamate and channel kinetics depend on the subunit composition (Probable).[1] [2] [3] [4] [5] [6] [7] [PDB:5IOV]

Publication Abstract from PubMed

Since it was discovered that the anti-hypertensive agent ifenprodil has neuroprotective activity through its effects on NMDA (N-methyl-D-aspartate) receptors, a determined effort has been made to understand the mechanism of action and to develop improved therapeutic compounds on the basis of this knowledge. Neurotransmission mediated by NMDA receptors is essential for basic brain development and function. These receptors form heteromeric ion channels and become activated after concurrent binding of glycine and glutamate to the GluN1 and GluN2 subunits, respectively. A functional hallmark of NMDA receptors is that their ion-channel activity is allosterically regulated by binding of small compounds to the amino-terminal domain (ATD) in a subtype-specific manner. Ifenprodil and related phenylethanolamine compounds, which specifically inhibit GluN1 and GluN2B NMDA receptors, have been intensely studied for their potential use in the treatment of various neurological disorders and diseases, including depression, Alzheimer's disease and Parkinson's disease. Despite considerable enthusiasm, mechanisms underlying the recognition of phenylethanolamines and ATD-mediated allosteric inhibition remain limited owing to a lack of structural information. Here we report that the GluN1 and GluN2B ATDs form a heterodimer and that phenylethanolamine binds at the interface between GluN1 and GluN2B, rather than within the GluN2B cleft. The crystal structure of the heterodimer formed between the GluN1b ATD from Xenopus laevis and the GluN2B ATD from Rattus norvegicus shows a highly distinct pattern of subunit arrangement that is different from the arrangements observed in homodimeric non-NMDA receptors and reveals the molecular determinants for phenylethanolamine binding. Restriction of domain movement in the bi-lobed structure of the GluN2B ATD, by engineering of an inter-subunit disulphide bond, markedly decreases sensitivity to ifenprodil, indicating that conformational freedom in the GluN2B ATD is essential for ifenprodil-mediated allosteric inhibition of NMDA receptors. These findings pave the way for improving the design of subtype-specific compounds with therapeutic value for neurological disorders and diseases.

Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors.,Karakas E, Simorowski N, Furukawa H Nature. 2011 Jun 15;475(7355):249-53. doi: 10.1038/nature10180. PMID:21677647[8]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Schmidt C, Werner M, Hollmann M. Revisiting the postulated "unitary glutamate receptor": electrophysiological and pharmacological analysis in two heterologous expression systems fails to detect evidence for its existence. Mol Pharmacol. 2006 Jan;69(1):119-29. doi: 10.1124/mol.105.016840. Epub 2005 Oct , 7. PMID:16214956 doi:http://dx.doi.org/10.1124/mol.105.016840
  2. Schmidt C, Hollmann M. Molecular and functional characterization of Xenopus laevis N-methyl-d-aspartate receptors. Mol Cell Neurosci. 2009 Oct;42(2):116-27. doi: 10.1016/j.mcn.2009.06.004. Epub, 2009 Jun 12. PMID:19524674 doi:http://dx.doi.org/10.1016/j.mcn.2009.06.004
  3. Karakas E, Simorowski N, Furukawa H. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature. 2011 Jun 15;475(7355):249-53. doi: 10.1038/nature10180. PMID:21677647 doi:10.1038/nature10180
  4. Lee CH, Lu W, Michel JC, Goehring A, Du J, Song X, Gouaux E. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature. 2014 Jul 10;511(7508):191-7. doi: 10.1038/nature13548. Epub 2014 Jun 22. PMID:25008524 doi:http://dx.doi.org/10.1038/nature13548
  5. Stroebel D, Buhl DL, Knafels JD, Chanda PK, Green M, Sciabola S, Mony L, Paoletti P, Pandit J. A novel binding mode reveals two distinct classes of NMDA receptor GluN2B-selective antagonists. Mol Pharmacol. 2016 Feb 24. pii: mol.115.103036. PMID:26912815 doi:http://dx.doi.org/10.1124/mol.115.103036
  6. Tajima N, Karakas E, Grant T, Simorowski N, Diaz-Avalos R, Grigorieff N, Furukawa H. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature. 2016 May 2. doi: 10.1038/nature17679. PMID:27135925 doi:http://dx.doi.org/10.1038/nature17679
  7. Lu W, Du J, Goehring A, Gouaux E. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science. 2017 Feb 23. pii: eaal3729. doi: 10.1126/science.aal3729. PMID:28232581 doi:http://dx.doi.org/10.1126/science.aal3729
  8. Karakas E, Simorowski N, Furukawa H. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature. 2011 Jun 15;475(7355):249-53. doi: 10.1038/nature10180. PMID:21677647 doi:10.1038/nature10180

3qem, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA