3nme: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Structure of a plant phosphatase== | ==Structure of a plant phosphatase== | ||
<StructureSection load='3nme' size='340' side='right' caption='[[3nme]], [[Resolution|resolution]] 2.40Å' scene=''> | <StructureSection load='3nme' size='340' side='right'caption='[[3nme]], [[Resolution|resolution]] 2.40Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3nme]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3nme]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Arabidopsis_thaliana Arabidopsis thaliana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3NME OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3NME FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3nme FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3nme OCA], [https://pdbe.org/3nme PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3nme RCSB], [https://www.ebi.ac.uk/pdbsum/3nme PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3nme ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/DSPG4_ARATH DSPG4_ARATH] Starch granule-associated phosphoglucan phosphatase involved in the control of starch accumulation. Acts as a major regulator of the initial steps of starch degradation at the granule surface. Functions during the day by dephosphorylating the night-accumulated phospho-oligosaccharides. Can release phosphate from both the C6 and the C3 positions, but dephosphorylates preferentially the C6 position (PubMed:20018599, PubMed:26231210).<ref>PMID:16513634</ref> <ref>PMID:16623901</ref> <ref>PMID:16772378</ref> <ref>PMID:19141707</ref> <ref>PMID:19754155</ref> <ref>PMID:20018599</ref> <ref>PMID:20679247</ref> <ref>PMID:22100529</ref> <ref>PMID:22321580</ref> <ref>PMID:24799671</ref> <ref>PMID:26231210</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/nm/3nme_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/nm/3nme_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
Line 34: | Line 33: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Arabidopsis thaliana]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Vander Kooi CW]] | ||
Latest revision as of 09:33, 27 November 2024
Structure of a plant phosphataseStructure of a plant phosphatase
Structural highlights
FunctionDSPG4_ARATH Starch granule-associated phosphoglucan phosphatase involved in the control of starch accumulation. Acts as a major regulator of the initial steps of starch degradation at the granule surface. Functions during the day by dephosphorylating the night-accumulated phospho-oligosaccharides. Can release phosphate from both the C6 and the C3 positions, but dephosphorylates preferentially the C6 position (PubMed:20018599, PubMed:26231210).[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedLiving organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize the outer surface of the glucan and mediate starch catabolism. All known plant genomes encode the glucan phosphatase Starch Excess4 (SEX4). SEX4 can dephosphorylate both the starch granule surface and soluble phosphoglucans and is necessary for processive starch metabolism. The physical basis for the function of SEX4 as a glucan phosphatase is currently unclear. Herein, we report the crystal structure of SEX4, containing phosphatase, carbohydrate-binding, and C-terminal domains. The three domains of SEX4 fold into a compact structure with extensive interdomain interactions. The C-terminal domain of SEX4 integrally folds into the core of the phosphatase domain and is essential for its stability. The phosphatase and carbohydrate-binding domains directly interact and position the phosphatase active site toward the carbohydrate-binding site in a single continuous pocket. Mutagenesis of the phosphatase domain residue F167, which forms the base of this pocket and bridges the two domains, selectively affects the ability of SEX4 to function as a glucan phosphatase. Together, these results reveal the unique tertiary architecture of SEX4 that provides the physical basis for its function as a glucan phosphatase. Structural basis for the glucan phosphatase activity of Starch Excess4.,Vander Kooi CW, Taylor AO, Pace RM, Meekins DA, Guo HF, Kim Y, Gentry MS Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15379-84. Epub 2010 Aug 2. PMID:20679247[12] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|