3m7u: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
<StructureSection load='3m7u' size='340' side='right'caption='[[3m7u]], [[Resolution|resolution]] 1.05&Aring;' scene=''>
<StructureSection load='3m7u' size='340' side='right'caption='[[3m7u]], [[Resolution|resolution]] 1.05&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3m7u]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Atcc_29487 Atcc 29487]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3M7U OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3M7U FirstGlance]. <br>
<table><tr><td colspan='2'>[[3m7u]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Lysobacter_enzymogenes Lysobacter enzymogenes]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3M7U OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3M7U FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.05&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3m7t|3m7t]], [[1ssx|1ssx]], [[1tal|1tal]]</div></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">alpha-LP, Lysobacter ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=69 ATCC 29487])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Alpha-lytic_endopeptidase Alpha-lytic endopeptidase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.21.12 3.4.21.12] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3m7u FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3m7u OCA], [https://pdbe.org/3m7u PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3m7u RCSB], [https://www.ebi.ac.uk/pdbsum/3m7u PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3m7u ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3m7u FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3m7u OCA], [https://pdbe.org/3m7u PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3m7u RCSB], [https://www.ebi.ac.uk/pdbsum/3m7u PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3m7u ProSAT]</span></td></tr>
</table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/PRLA_LYSEN PRLA_LYSEN]
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
The crystal structure of the extracellular bacterial serine protease alpha-lytic protease (alphaLP) has been solved at 0.83 A resolution at pH 8. This ultra-high resolution structure allows accurate analysis of structural elements not possible with previous structures. Hydrogen atoms are visible, and confirm active-site hydrogen-bonding interactions expected for the apo enzyme. In particular, His57 N(delta1) participates in a normal hydrogen bond with Asp102 in the catalytic triad, with a hydrogen atom visible 0.83(+/-0.06)A from the His N(delta1). The catalytic Ser195 occupies two conformations, one corresponding to a population of His57 that is doubly protonated, the other to the singly protonated His57. Based on the occupancy of these conformations, the pKa of His57 is calculated to be approximately 8.8 when a sulfate ion occupies the active site. This 0.83 A structure has allowed critical analysis of geometric distortions within the structure. Interestingly, Phe228 is significantly distorted from planarity. The distortion of Phe228, buried in the core of the C-terminal domain, occurs at an estimated energetic cost of 4.1 kcal/mol. The conformational space for Phe228 is severely limited by the presence of Trp199, which prevents Phe228 from adopting the rotamer observed in many other chymotrypsin family members. In alphaLP, the only allowed rotamer leads to the deformation of Phe228 due to steric interactions with Thr181. We hypothesize that tight packing of co-evolved residues in this region, and the subsequent deformation of Phe228, contributes to the high cooperativity and large energetic barriers for folding and unfolding of alphaLP. The kinetic stability imparted by the large, cooperative unfolding barrier plays a critical role in extending the lifetime of the protease in its harsh environment.
Insight into the dynamic properties of alpha-lytic protease (alpha LP) has been obtained through the use of low-temperature X-ray crystallography and multiple-conformation refinement. Previous studies of alpha LP have shown that the residues around the active site are able to move significantly to accommodate substrates of different sizes. Here we show a link between the ability to accommodate ligands and the dynamics of the binding pocket. Although the structure of alpha LP at 120 K has B-factors with a uniformly low value of 4.8 A2 for the main chain, four regions stand out as having significantly higher B-factors. Because thermal motion should be suppressed at cryogenic temperatures, the high B-factors are interpreted as the result of trapped conformational substates. The active site residues that are perturbed during accommodation of different substrates are precisely those showing conformational substates, implying that substrate binding selects a subset of conformations from the ensemble of accessible states. To better characterize the precise nature of these substates, a protein model consisting of 16 structures has been refined and evaluated. The model reveals a number of features that could not be well-described by conventional B-factors: for example, 40% of the main-chain residue conformations are distributed asymmetrically or in discrete clusters. Furthermore, these data demonstrate an unexpected correlation between motions on either side of the binding pocket that we suggest is a consequence of "dynamic close packing." These results provide strong evidence for the role of protein dynamics in substrate binding and are consistent with the results of dynamic studies of ligand binding in myoglobin and ribonuclease A.


The 0.83 A resolution crystal structure of alpha-lytic protease reveals the detailed structure of the active site and identifies a source of conformational strain.,Fuhrmann CN, Kelch BA, Ota N, Agard DA J Mol Biol. 2004 May 14;338(5):999-1013. PMID:15111063<ref>PMID:15111063</ref>
Conformational substates in enzyme mechanism: the 120 K structure of alpha-lytic protease at 1.5 A resolution.,Rader SD, Agard DA Protein Sci. 1997 Jul;6(7):1375-86. PMID:009232638<ref>PMID:009232638</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Line 26: Line 26:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Alpha-lytic endopeptidase]]
[[Category: Atcc 29487]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Agard, D A]]
[[Category: Lysobacter enzymogenes]]
[[Category: Bailey, F P.Erciyas]]
[[Category: Agard DA]]
[[Category: Waddling, C A]]
[[Category: Erciyas Bailey FP]]
[[Category: Disulfide bond]]
[[Category: Waddling CA]]
[[Category: Hydrolase]]
[[Category: Protease]]
[[Category: Serine protease]]
[[Category: Zymogen]]

Latest revision as of 05:07, 21 November 2024

Crystal Structure of Alpha-Lytic Protease SB1+2 R64A/E182Q MutantCrystal Structure of Alpha-Lytic Protease SB1+2 R64A/E182Q Mutant

Structural highlights

3m7u is a 2 chain structure with sequence from Lysobacter enzymogenes. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.05Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PRLA_LYSEN

Publication Abstract from PubMed

Insight into the dynamic properties of alpha-lytic protease (alpha LP) has been obtained through the use of low-temperature X-ray crystallography and multiple-conformation refinement. Previous studies of alpha LP have shown that the residues around the active site are able to move significantly to accommodate substrates of different sizes. Here we show a link between the ability to accommodate ligands and the dynamics of the binding pocket. Although the structure of alpha LP at 120 K has B-factors with a uniformly low value of 4.8 A2 for the main chain, four regions stand out as having significantly higher B-factors. Because thermal motion should be suppressed at cryogenic temperatures, the high B-factors are interpreted as the result of trapped conformational substates. The active site residues that are perturbed during accommodation of different substrates are precisely those showing conformational substates, implying that substrate binding selects a subset of conformations from the ensemble of accessible states. To better characterize the precise nature of these substates, a protein model consisting of 16 structures has been refined and evaluated. The model reveals a number of features that could not be well-described by conventional B-factors: for example, 40% of the main-chain residue conformations are distributed asymmetrically or in discrete clusters. Furthermore, these data demonstrate an unexpected correlation between motions on either side of the binding pocket that we suggest is a consequence of "dynamic close packing." These results provide strong evidence for the role of protein dynamics in substrate binding and are consistent with the results of dynamic studies of ligand binding in myoglobin and ribonuclease A.

Conformational substates in enzyme mechanism: the 120 K structure of alpha-lytic protease at 1.5 A resolution.,Rader SD, Agard DA Protein Sci. 1997 Jul;6(7):1375-86. PMID:009232638[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Rader SD, Agard DA. Conformational substates in enzyme mechanism: the 120 K structure of alpha-lytic protease at 1.5 A resolution. Protein Sci. 1997 Jul;6(7):1375-86. PMID:9232638

3m7u, resolution 1.05Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA